Characteristic functions of measures on geometric rough paths

We define a characteristic function for probability measures on the signatures of geometric rough paths. We determine sufficient conditions under which a random variable is uniquely determined by its expected signature, thus partially solving the analogue of the moment problem. We furthermore study analyticity properties of the characteristic function and prove a method of moments for weak convergence of random variables. We apply our results to signature arising from Levy, Gaussian and Markovian rough paths.

[1]  Terry Lyons,et al.  Expected signature of Brownian Motion up to the first exit time from a bounded domain , 2011, 1101.5902.

[2]  Terry Lyons,et al.  The Signature of a Rough Path: Uniqueness , 2014, 1406.7871.

[3]  Path-wise solutions of stochastic differential equations driven by Lévy processes , 2001 .

[4]  Terry Lyons,et al.  Integrability Estimates for Gaussian Rough Differential Equations , 2011, 1104.1813.

[5]  P. Friz,et al.  General Rough integration, Levy Rough paths and a Levy--Kintchine type formula , 2012, 1212.5888.

[6]  Kuo-Tsai Chen INTEGRATION OF PATHS—A FAITHFUL REPRE- SENTATION OF PATHS BY NONCOMMUTATIVE FORMAL POWER SERIES , 1958 .

[7]  Terry Lyons Rough paths, Signatures and the modelling of functions on streams , 2014, 1405.4537.

[8]  Martin Hairer,et al.  A Course on Rough Paths: With an Introduction to Regularity Structures , 2014 .

[9]  Mikhail Zaicev,et al.  Polynomial identities and asymptotic methods , 2005 .

[10]  On uniformly subelliptic operators and stochastic area , 2006, math/0609007.

[11]  École d'été de probabilités de Saint-Flour,et al.  Differential equations driven by rough paths , 2007 .

[12]  S. Semmes Topological Vector Spaces , 2003 .

[13]  S. Dineen Complex Analysis on Locally Convex Spaces , 2012 .

[14]  Holomorphic deformation of Hopf algebras and applications to quantum groups , 1996, q-alg/9612015.

[15]  Terry Lyons,et al.  Cubature on Wiener space , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  Invariant measures in groups which are not locally compact , 1946 .

[17]  Terry Lyons,et al.  System Control and Rough Paths , 2003 .

[18]  J. K. Hunter,et al.  Measure Theory , 2007 .

[19]  J. Cuntz Excision in periodic cyclic theory for topological algebras , 1995 .

[20]  Terry Lyons,et al.  Inverting the signature of a path , 2014, 1406.7833.

[21]  Free Lie algebras,et al.  Free Lie algebras , 2015 .

[22]  Terry Lyons Di erential equations driven by rough signals , 1998 .

[23]  M. Megrelishvili Every semitopological semigroup compactification of the group H+[0,1] is trivial , 2001 .

[24]  Martin Hairer,et al.  A Course on Rough Paths , 2020, Universitext.

[25]  C. Litterer,et al.  High order recombination and an application to cubature on Wiener space , 2010 .

[26]  On minimal ∗-identities of matrices ∗ , 1995 .

[27]  Tensor product mappings , 1970 .

[28]  Peter K. Friz,et al.  Multidimensional Stochastic Processes as Rough Paths: Theory and Applications , 2010 .

[29]  K. Knopp Ein einfaches Verfahren zur Bildüng stetiger nirgends differenzierbarer Funktionen , 1918 .

[30]  M. Gerstenhaber,et al.  The hidden group structure of quantum groups: Strong duality, rigidity and preferred deformations , 1994 .

[31]  Hao Ni The expected signature of a stochastic process , 2012 .

[32]  T. Tsankov Unitary Representations of Oligomorphic Groups , 2011, 1101.2194.

[33]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[34]  Terry Lyons,et al.  Uniqueness for the signature of a path of bounded variation and the reduced path group , 2005, math/0507536.

[35]  Herbert Heyer,et al.  Probability Measures on Locally Compact Groups , 1977 .

[36]  A. Mallios,et al.  Topological algebras - selected topics , 1986, North-Holland mathematics studies.

[37]  T. Cass,et al.  Tail estimates for Markovian rough paths , 2014, 1411.5189.

[38]  A. Grothendieck,et al.  Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .

[39]  M. Hino,et al.  Fractional order Taylor's series and the neo‐classical inequality , 2010, 1001.1775.