Modelos de volatilidade estocstica em sries financeiras: uma aplicao para o IBOVESPA

In this paper, we present a Bayesian analysis for stochastic volatility models (SV) and a generalized form of this model, with the aim to estimate the volatilities of financial time series. Considering same special cases of the SV models, we use Markov Chain Monte Carlo methods and the software WinBugs to get the posterior summaries of interest for the different forms of SV models. We also introduce some Bayesian discrimination methods to choose the best model to be used to estimate the volatilities and to get predictions of the financial time series. An example of application is introduced with the Brazilian financial series IBOVESPA.

[1]  M. Newton,et al.  Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity , 2006 .

[2]  M. Aitkin Posterior Bayes Factors , 1991 .

[3]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[4]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[5]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[6]  N. Shephard Statistical aspects of ARCH and stochastic volatility , 1996 .

[7]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[8]  R. Engle GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics , 2001 .

[9]  S. Taylor Financial Returns Modelled by the Product of Two Stochastic Processes , 1961 .

[10]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[11]  S. Fischer,et al.  Lectures on Macroeconomics , 1972 .

[12]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[13]  Jun Yu,et al.  Deviance Information Criterion for Comparing Stochastic Volatility Models , 2002 .

[14]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[15]  Stephen L Taylor,et al.  MODELING STOCHASTIC VOLATILITY: A REVIEW AND COMPARATIVE STUDY , 1994 .

[16]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[17]  Jun Yu,et al.  Bugs for a Bayesian Analysis of Stochastic Volatility Models , 2000 .

[18]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[19]  George Tauchen,et al.  THE PRICE VARIABILITY-VOLUME RELATIONSHIP ON SPECULATIVE MARKETS , 1983 .