Addressing planar solid oxide cell degradation mechanisms: A critical review of selected components

In this review paper, a critical assessment of the main degradation processes in three key components of solid oxide fuel cells and electrolysers (negative and positive electrodes and the interconnect) is undertaken, attempting prioritization of respective degradation effects and recommendation of the best approaches in their experimental ascertainment and numerical modeling. Besides different approaches to quantifying the degradation rate of an operating solid oxide cell (SOC), the latest advancements in microstructural representation (3D imaging and reconstruction) of SOC electrodes are reviewed, applied to the quantification of triple-phase boundary (TPB) lengths and morphology evolution over time. The intrinsic degradation processes in the negative (fuel) electrode and the positive (oxygen) electrode are discussed, covering first the composition and governing mechanisms of the respective electrodes, followed by a comprehensive evaluation of the most important factors of degradation during operation. By this systematic identification of dominant degradation processes, measurement techniques, and modeling approaches, the foundations are laid for the definition of meaningful accelerated stress testing of SOC cells and stacks, which will help the technology achieve the constantly more demanding durability targets in market applications.

[1]  J. Bassat,et al.  Electrochemical ageing study of mixed lanthanum/praseodymium nickelates La2-Pr NiO4+δ as oxygen electrodes for solid oxide fuel or electrolysis cells , 2020, Journal of Energy Chemistry.

[2]  R. Steinberger‐Wilckens,et al.  In-situ experimental benchmarking of solid oxide fuel cell metal interconnect solutions , 2020, Journal of Power Sources.

[3]  P. Goyal,et al.  An overview of degradation in solid oxide fuel cells-potential clean power sources , 2020, Journal of Solid State Electrochemistry.

[4]  P. Cloetens,et al.  Particle-based model for functional and diffusion layers of solid oxide cells electrodes , 2020, Powder Technology.

[5]  M. Willinger,et al.  Corrosion behaviour of nitrided ferritic stainless steels for use in solid oxide fuel cell devices , 2020, Corrosion Science.

[6]  P. Hendriksen,et al.  Comparison of microstructural evolution of fuel electrodes in solid oxide fuel cells and electrolysis cells , 2020, Journal of Power Sources.

[7]  D. Ferreira Sánchez,et al.  Durability of nanostructured LaPrNiO4+δ electrode for solid oxide cells: Electrochemical, microstructural, and structural investigation , 2020 .

[8]  M. Cantoni,et al.  Evolution of the Morphology Near Triple-Phase Boundaries in Ni–Yttria Stabilized Zirconia Electrodes Upon Cathodic Polarization , 2020 .

[9]  L. Barelli,et al.  Optimization of a Reference Kinetic Model for Solid Oxide Fuel Cells , 2020 .

[10]  D. Favrat,et al.  The Effects of Dynamic Dispatch on the Degradation and Lifetime of Solid Oxide Fuel Cell Systems , 2019, ECS Transactions.

[11]  J. Ouweltjes,et al.  Degradation analysis of commercial interconnect materials for solid oxide fuel cells in stacks operated up to 18000 hours , 2019, International Journal of Hydrogen Energy.

[12]  P. Cloetens,et al.  Degradation of Ni-YSZ Electrodes in Solid Oxide Cells: Impact of Polarization and Initial Microstructure on the Ni Evolution , 2019, Journal of The Electrochemical Society.

[13]  R. Steinberger‐Wilckens,et al.  Ex-situ experimental benchmarking of solid oxide fuel cell metal interconnects , 2019, Journal of Power Sources.

[14]  A. Nakajo,et al.  Model-assisted identification of solid oxide cell elementary processes by electrochemical impedance spectroscopy measurements , 2019, Journal of Power Sources.

[15]  E. Djurado,et al.  Improving the electrochemical performance of LaPrNiO4+δ as an oxygen electrode for intermediate temperature solid oxide cells by varying the architectural design , 2019, Journal of Electroanalytical Chemistry.

[16]  H. Frandsen,et al.  Reversible solid-oxide cells for clean and sustainable energy , 2019, Clean Energy.

[17]  Dominique Bonvin,et al.  Enforcing optimal operation in solid-oxide fuel-cell systems , 2019, Energy.

[18]  K. Lee,et al.  Correlation of Time-Dependent Oxygen Surface Exchange Kinetics with Surface Chemistry of La0.6Sr0.4Co0.2Fe0.8O3- Catalysts. , 2019, ACS applied materials & interfaces.

[19]  François Maréchal,et al.  Reversible solid oxide systems for energy and chemical applications – Review & perspectives , 2019, Journal of Energy Storage.

[20]  Dominique Bonvin,et al.  Real-time optimization of an experimental solid-oxide fuel-cell system , 2019, Journal of Power Sources.

[21]  M. Cantoni,et al.  Characterization of local morphology and availability of triple-phase boundaries in solid oxide cell electrodes , 2019, Acta Materialia.

[22]  N. Shikazono,et al.  Evaluation of La0.57Sr0.38Co0.2Fe0.8O3-δ Electrode Performance Degradation Based on Three-Dimensional Microstructure Reconstruction and Electrochemical Simulation , 2019, Journal of The Electrochemical Society.

[23]  T. Matsui,et al.  Degradation Analysis of Solid Oxide Fuel Cells with (La,Sr)(Co,Fe)O3-δ Cathode/Gd2O3–CeO2 Interlayer/Y2O3–ZrO2 Electrolyte System: The Influences of Microstructural Change and Solid Solution Formation , 2019, ECS Transactions.

[24]  A. Nakajo,et al.  Effects of Polarization on the Microstructural Changes at the YSZ/Ni-YSZ Interface , 2019, ECS Transactions.

[25]  O. Himanen,et al.  Method to Measure Area Specific Resistance and Chromium Migration Simultaneously from Solid Oxide Fuel Cell Interconnect Materials , 2019, Fuel Cells.

[26]  Ranjan Sharma,et al.  Reaction Mechanism and Impact of Microstructure on Performances for the LSCF‐CGO Composite Electrode in Solid Oxide Cells , 2019, Fuel Cells.

[27]  N. Shikazono,et al.  Achievements of NEDO Durability Projects on SOFC Stacks in the Light of Physicochemical Mechanisms , 2019, Fuel Cells.

[28]  S. Schlabach,et al.  X-ray fluorescence nano-imaging of long-term operated solid oxide electrolysis cells , 2019, Journal of Power Sources.

[29]  E. Djurado,et al.  Highly efficient architectured Pr6O11 oxygen electrode for solid oxide fuel cell , 2019, Journal of Power Sources.

[30]  François Maréchal,et al.  Trade-off designs and comparative exergy evaluation of solid-oxide electrolyzer based power-to-methane plants , 2019, International Journal of Hydrogen Energy.

[31]  U. Hampel,et al.  Simulation of the transient behavior of tubular solid oxide electrolyzer cells under fast load variations , 2019, International Journal of Hydrogen Energy.

[32]  G. Pulcini,et al.  A Bayesian approach for non-homogeneous gamma degradation processes , 2019 .

[33]  S. Campanari,et al.  Development of a Multiscale SOFC Model and Application to Axially‐Graded Electrode Design , 2019, Fuel Cells.

[34]  S. Jiang,et al.  Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells – A review , 2019, International Journal of Hydrogen Energy.

[35]  Alberto Traverso,et al.  SOFC/Gas Turbine Hybrid System: A simplified framework for dynamic simulation , 2019, Applied Energy.

[36]  T.,et al.  Inter , 2019, Claudia Larcher - Rooms.

[37]  Shinji Kimijima,et al.  A Multiscale Approach to the Numerical Simulation of the Solid Oxide Fuel Cell , 2019, Catalysts.

[38]  R. Sharma,et al.  Microstructural correlations for specific surface area and triple phase boundary length for composite electrodes of solid oxide cells , 2019, Journal of Power Sources.

[39]  B. Bosio,et al.  A 2-D model for Intermediate Temperature Solid Oxide Fuel Cells Preliminarily Validated on Local Values , 2019 .

[40]  Zijing Lin,et al.  Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions , 2018, Applied Energy.

[41]  E. Ivers-Tiffée,et al.  Gd0.2Ce0.8O2 Diffusion Barrier Layer between (La0.58Sr0.4)(Co0.2Fe0.8)O3−δ Cathode and Y0.16Zr0.84O2 Electrolyte for Solid Oxide Fuel Cells: Effect of Barrier Layer Sintering Temperature on Microstructure , 2018, ACS Applied Energy Materials.

[42]  Z. Stoynov,et al.  Differential analysis of SOFC current-voltage characteristics , 2018, Applied Energy.

[43]  Marco Sorrentino,et al.  A versatile computational tool for model-based design, control and diagnosis of a generic Solid Oxide Fuel Cell Integrated Stack Module , 2018, Energy Conversion and Management.

[44]  P. Cloetens,et al.  Impact of Nickel agglomeration on Solid Oxide Cell operated in fuel cell and electrolysis modes , 2018, Journal of Power Sources.

[45]  James B. Robinson,et al.  Thermally Driven SOFC Degradation in 4D: Part II. Macroscale , 2018 .

[46]  A. Hagen,et al.  Classical statistical methodology for accelerated testing of Solid Oxide Fuel Cells , 2018, Journal of Power Sources.

[47]  Jong‐Won Lee,et al.  A simplified approach to predict performance degradation of a solid oxide fuel cell anode , 2018, Journal of Power Sources.

[48]  K. Friedrich,et al.  A parameter study of solid oxide electrolysis cell degradation: Microstructural changes of the fuel electrode , 2018, Electrochimica Acta.

[49]  E. Siebert,et al.  Experimental validation of a La0.6Sr0.4Co0.2Fe0.8O3-δ electrode model operated in electrolysis mode: Understanding the reaction pathway under anodic polarization , 2018, Solid State Ionics.

[50]  Sanghyeok Lee,et al.  Thermal degradation mechanism of ferritic alloy (Crofer 22 APU) , 2018 .

[51]  V. Kharton,et al.  Ion transfer in Ni-containing composite anodes of solid oxide fuel cells: A microstructural study , 2018 .

[52]  P. Bleuet,et al.  Corrigendum to ‘3D phase mapping of solid oxide fuel cell YSZ/Ni cermet at the nanoscale by holographic X-ray nanotomography’ , 2018 .

[53]  Tarannom Parhizkar,et al.  Degradation based operational optimization model to improve the productivity of energy systems, case study: Solid oxide fuel cell stacks , 2018 .

[54]  P. Cloetens,et al.  Stochastic geometrical modeling of solid oxide cells electrodes validated on 3D reconstructions , 2018 .

[55]  Yong Kuang,et al.  A 2D model for solid oxide fuel cell with a mixed ionic and electronic conducting electrolyte , 2018 .

[56]  J. Bassat,et al.  Gadolinium doped ceria interlayers for Solid Oxide Fuel Cells cathodes: Enhanced reactivity with sintering aids (Li, Cu, Zn), and improved densification by infiltration , 2017 .

[57]  V. Buscaglia,et al.  Cation Diffusion and Segregation at the Interface between Samarium-Doped Ceria and LSCF or LSFCu Cathodes Investigated with X-ray Microspectroscopy. , 2017, ACS applied materials & interfaces.

[58]  F. Tietz,et al.  A Mössbauer spectral study of degradation in La0.58Sr0.4Fe0.5Co0.5O3−x after long-term operation in solid oxide electrolysis cells , 2017 .

[59]  A. Thorel,et al.  Differential Resistance Analysis – a New Tool for Evaluation of Solid Oxide Fuel Cells Degradation , 2017 .

[60]  B. Koeppel,et al.  Mechanical reliability and life prediction of coated metallic interconnects within solid oxide fuel cells , 2017 .

[61]  Cesare Pianese,et al.  Control algorithm design for degradation mitigation and lifetime improvement of Polymer Electrolyte Membrane Fuel Cells , 2017 .

[62]  G. Roux,et al.  Effects of Pressure on High Temperature Steam and Carbon Dioxide Co-electrolysis , 2017 .

[63]  Mansoo Park,et al.  Acceleration tests: Degradation of anode-supported planar solid oxide fuel cells at elevated operating temperatures , 2017 .

[64]  S. Anelli,et al.  Influence of Surface Finishing on High-Temperature Oxidation of AISI Type 444 Ferritic Stainless Steel Used in SOFC Stacks , 2017, Acta Metallurgica Sinica (English Letters).

[65]  Mansoo Park,et al.  Fabrication of dense and defect-free diffusion barrier layer via constrained sintering for solid oxide fuel cells , 2017 .

[66]  A. Brisse,et al.  Post‐test Analysis on a Solid Oxide Cell Stack Operated for 10,700 Hours in Steam Electrolysis Mode , 2017 .

[67]  E. Siebert,et al.  Degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3-δ/Gd0.1Ce0.9O2-δ composite electrode operated under solid oxide electrolysis and fuel cell conditions , 2017 .

[68]  M. Cantoni,et al.  Strontium Migration at the GDC-YSZ Interface of Solid Oxide Cells in SOFC and SOEC Modes , 2017 .

[69]  Maxime Hubert,et al.  Solid Oxide Cell Degradation Operated in Fuel Cell and Electrolysis Modes: A Comparative Study on Ni Agglomeration and LSCF Destabilization , 2017 .

[70]  M. Cantoni,et al.  Evolution of 3-D Transport Pathways and Triple-Phase Boundaries in the Ni-YSZ Hydrogen Electrode upon Fuel Cell or Electrolysis Cell Operation , 2017 .

[71]  R. Steinberger‐Wilckens,et al.  Modelling Microstructural and Chemical Degradation of Ferritic Stainless Steels for SOFC Interconnects , 2017 .

[72]  Jan Van herle,et al.  The Effects of Component Tolerances on the Thermo-Mechanical Reliability of SOFC Stacks , 2017 .

[73]  P. Hendriksen,et al.  Relation Between Ni Particle Shape Change and Ni Migration in Ni–YSZ Electrodes – a Hypothesis , 2017 .

[74]  A. Hagen,et al.  Study of Operating Parameters for Accelerated Anode Degradation in SOFCs , 2017 .

[75]  A. Brisse,et al.  23,000 h steam electrolysis with an electrolyte supported solid oxide cell , 2017 .

[76]  H. Spliethoff,et al.  Simulation of a reversible SOFC with Aspen Plus , 2017 .

[77]  A. Muchtar,et al.  Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques , 2017 .

[78]  Hanako Nishino,et al.  High durability of La0.6Sr0.4Co0.2Fe0.8O3−δ/samaria-doped ceria (SDC) composite oxygen electrode with SDC interlayer for reversible solid oxide fuel cell/solid oxide electrolysis cell , 2017 .

[79]  S. Jiang,et al.  Effect of SO2 Poisoning on the Electrochemical Activity of La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes of Solid Oxide Fuel Cells , 2017 .

[80]  J. Bassat,et al.  Multi-scale analysis of the diffusion barrier layer of gadolinia-doped ceria in a solid oxide fuel cell operated in a stack for 3000 h , 2017 .

[81]  K. Terada,et al.  Simulation Technology on SOFC Durability With an Emphasis on Conductivity Degradation of ZrO2-Base Electrolyte , 2017 .

[82]  K. Unocic,et al.  Predicting Oxidation-Limited Lifetime of Thin-Walled Components of NiCrW Alloy 230 , 2017, Oxidation of Metals.

[83]  Hanako Nishino,et al.  Effect of samaria-doped ceria (SDC) interlayer on the performance of La0.6Sr0.4Co0.2Fe0.8O3-δ/SDC composite oxygen electrode for reversible solid oxide fuel cells , 2017 .

[84]  P. Bleuet,et al.  A 2D and 3D X-ray μ-diffraction and μ-fluorescence study of a mixed ionic electronic conductor , 2017 .

[85]  Tohru Yamamoto,et al.  Degradation Analysis of SOFC Stack Performance-Durability Test and Verification of Improved SOFCs- , 2017 .

[86]  Alexander Michaelis,et al.  Influence of Electrode Design and Contacting Layers on Performance of Electrolyte Supported SOFC/SOEC Single Cells , 2016, Materials.

[87]  P. Bleuet,et al.  Role of microstructure on electrode operating mechanisms for mixed ionic electronic conductors: From synchrotron-based 3D reconstruction to electrochemical modeling , 2016 .

[88]  Q. Jeangros,et al.  Energy-filtered environmental transmission electron microscopy for the assessment of solid-gas reactions at elevated temperature: NiO/YSZ-H2 as a case study. , 2016, Ultramicroscopy.

[89]  M. Mogensen,et al.  Ni/YSZ electrodes structures optimized for increased electrolysis performance and durability , 2016 .

[90]  Hironori Nakajima,et al.  Reliability of the numerical SOFC models for estimating the spatial current and temperature variations , 2016 .

[91]  J. Bassat,et al.  An innovative efficient oxygen electrode for SOFC: Pr6O11 infiltrated into Gd-doped ceria backbone , 2016 .

[92]  M. Cantoni,et al.  Accessible triple-phase boundary length: A performance metric to account for transport pathways in heterogeneous electrochemical materials , 2016 .

[93]  K. Sasaki,et al.  Atomic-resolution analysis of degradation phenomena in SOFCS: A case study of SO2 poisoning in LSM cathodes , 2016 .

[94]  Volker Schmidt,et al.  Stochastic 3D modeling of complex three-phase microstructures in SOFC-electrodes with completely connected phases , 2016 .

[95]  Barbara Bosio,et al.  Extension of an effective MCFC kinetic model to a wider range of operating conditions , 2016 .

[96]  Cesare Pianese,et al.  On-line experimental validation of a model-based diagnostic algorithm dedicated to a solid oxide fuel cell system , 2016 .

[97]  Detlef Stolten,et al.  Fuel Cells : Data, Facts and Figures , 2016 .

[98]  J. Herle,et al.  A TEM study of Ni interfaces formed during activation of SOFC anodes in H-2: Influence of grain boundary symmetry and segregation of impurities , 2016 .

[99]  P. Voorhees,et al.  Observing the microstructural evolution of Ni-Yttria-stabilized zirconia solid oxide fuel cell anodes , 2016 .

[100]  M. Viviani,et al.  Microstructural and Electrical Characterization of Plasma Sprayed Cu‐Mn Oxide Spinels as Coating on Metallic Interconnects for Stacking Solid Oxide Fuel Cells , 2015 .

[101]  J. Bassat,et al.  La2 − xPrxNiO4 + δ as suitable cathodes for metal supported SOFCs , 2015 .

[102]  H. Yokokawa Towards Comprehensive Description of Stack Durability/Reliability Behavior , 2015 .

[103]  P. Cloetens,et al.  Reactive Mechanisms of LSCF Single-Phase and LSCF-CGO Composite Electrodes Operated in Anodic and Cathodic Polarisations , 2015 .

[104]  K. Kim,et al.  A novel solid oxide electrolysis cell (SOEC) to separate anodic from cathodic polarization under high electrolysis current , 2015 .

[105]  Maurizio Guida,et al.  A random-effects model for long-term degradation analysis of solid oxide fuel cells , 2015, Reliab. Eng. Syst. Saf..

[106]  J. Svensson,et al.  The effect of temperature on chromium vaporization and oxide scale growth on interconnect steels for Solid Oxide Fuel Cells , 2015 .

[107]  V. A. Eremin,et al.  Characterization of Ni-cermet degradation phenomena I. Long term resistivity monitoring, image processing and X-ray fluorescence analysis , 2015 .

[108]  Eric D. Wachsman,et al.  Investigating the Relationship between Operating Conditions and SOFC Cathode Degradation , 2015 .

[109]  N. Menzler,et al.  Solid Oxide Fuel Cell, Stack and System Development Status at Forschungszentrum Jülich , 2015 .

[110]  William M. Harris,et al.  Characterization of Cracks and their Effects on the Effective Transport Pathways in Ni-YSZ Anodes after Reoxidation Using X-Ray Nanotomography , 2015 .

[111]  A. Mai,et al.  Hexis and the SOFC System Galileo 1000 N: Experiences from Lab and Field Testing , 2015 .

[112]  J. Ouweltjes,et al.  Degradation Studies and Sr Diffusion Behaviour in Anode Supported Cell after 3,000 h SOFC Short Stack Testing , 2015 .

[113]  Z. Stoynov,et al.  Impedance Studies of the Reduction Process in NiO-YSZ SOFC Anodes , 2015 .

[114]  Tohru Yamamoto,et al.  Performance Degradation Analysis of Different Type SOFCs , 2015 .

[115]  O. Himanen,et al.  Evaluation of Protective Coatings for SOFC Interconnects , 2015 .

[116]  H. Yokokawa Current Status of Rapid Evaluation of Durability of Six SOFC Stacks within Nedo Project , 2015 .

[117]  J. Ouweltjes,et al.  Ageing of Materials at Inlet and Outlet Fuel Manifolds in a SOFC Stack , 2015 .

[118]  K. Sasaki,et al.  Oxidation-Induced Degradation of SOFC Ni Anodes at High Fuel Utilizations , 2015 .

[119]  Jan Van herle,et al.  Thermo-mechanical Reliability of SOFC Stacks During Combined Long-term Operation and Thermal Cycling , 2015 .

[120]  Marco Sorrentino,et al.  Model-based development of a fault signature matrix to improve solid oxide fuel cell systems on-site diagnosis , 2015 .

[121]  P. S. Jørgensen,et al.  Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure , 2015 .

[122]  W. Sitte,et al.  Degradation and regeneration of the SOFC cathode material La0.6Sr0.4CoO3 − δ in SO2-containing atmospheres , 2015 .

[123]  S. Anelli,et al.  K44M ferritic stainless steel as possible interconnect material for SOFC stack operating at 600 °C: Characterization of the oxidation behaviour at early working stages , 2015 .

[124]  F. Tietz,et al.  Microstructural comparison of solid oxide electrolyser cells operated for 6100 h and 9000 h , 2015 .

[125]  Szu-Han Wu,et al.  Effects of reduction process on the electrochemical and microstructural properties for electrolyte-supported SOFC , 2015 .

[126]  V. Birss,et al.  The effect of pre-oxidation treatments on the oxidation tolerance of Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells , 2014 .

[127]  P. Bleuet,et al.  Degradation study by 3D reconstruction of a nickel-yttria stabilized zirconia cathode after high temperature steam electrolysis operation , 2014 .

[128]  Hiroki Muroyama,et al.  Degradation of nickel–yttria-stabilized zirconia anode in solid oxide fuel cells under changing temperature and humidity conditions , 2014 .

[129]  Jan Van herle,et al.  Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack , 2014 .

[130]  Mina Nishi,et al.  Effect of polarization on Sr and Zr diffusion behavior in LSCF/GDC/YSZ system , 2014 .

[131]  M. Seabaugh,et al.  Lifetime prediction for manganese cobalt spinel oxide coatings on metallic interconnects , 2014 .

[132]  Francois L. E. Usseglio-Viretta,et al.  Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation , 2014 .

[133]  Zijing Lin,et al.  Theoretical model for surface diffusion driven Ni-particle agglomeration in anode of solid oxide fuel cell , 2014 .

[134]  R. Wu,et al.  Importance of oxygen spillover for fuel oxidation on Ni/YSZ anodes in solid oxide fuel cells. , 2014, Physical chemistry chemical physics : PCCP.

[135]  C. Hébert,et al.  Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope , 2014 .

[136]  R. Davis,et al.  Connecting microstructural coarsening processes to electrochemical performance in solid oxide fuel cells: An integrated modeling approach , 2014 .

[137]  Jakob B Wagner,et al.  Measurements of local chemistry and structure in Ni(O)-YSZ composites during reduction using energy-filtered environmental TEM. , 2014, Chemical communications.

[138]  S. Jiang,et al.  Chromium deposition and poisoning of cathodes of solid oxide fuel cells – A review , 2014 .

[139]  A. Brisse,et al.  A Review and Comprehensive Analysis of Degradation Mechanisms of Solid Oxide Electrolysis Cells , 2013 .

[140]  J. Bassat,et al.  Anisotropic Oxygen Diffusion Properties in Pr2NiO4+δ and Nd2NiO4+δ Single Crystals , 2013 .

[141]  Marco Sorrentino,et al.  A neural network estimator of Solid Oxide Fuel Cell performance for on-field diagnostics and prognostics applications , 2013 .

[142]  P. Bleuet,et al.  Degradation Study of the La0.6Sr0.4Co0.2Fe0.8O3 Solid Oxide Electrolysis Cell (SOEC) Anode after High Temperature Electrolysis Operation , 2013 .

[143]  H. Madi,et al.  Local Activation and Degradation of Electrochemical Processes in a SOFC , 2013 .

[144]  M. Faghihi-sani,et al.  “Fe doped Ni–Co spinel protective coating on ferritic stainless steel for SOFC interconnect application” , 2013 .

[145]  K. Yamaji,et al.  Evaluation of Sulfur Dioxide Poisoning for LSCF Cathodes , 2013 .

[146]  S. Diethelm,et al.  Electrolysis and Co‐Electrolysis Performance of SOE Short Stacks , 2013 .

[147]  Tohru Yamamoto,et al.  Chromium Poisoning of LaMnO3‐Based Cathode within Generalized Approach , 2013 .

[148]  Haddad Djamel,et al.  Thermal field in SOFC fed by hydrogen: Inlet gases temperature effect , 2013 .

[149]  Mina Nishi,et al.  Degradation mechanism of SOFC cathodes under CrO 3 and SO 2 impurity exposures , 2013 .

[150]  J. Laurencin,et al.  Micro modelling of solid oxide electrolysis cell: From performance to durability , 2013 .

[151]  William M. Harris,et al.  Three-dimensional microstructural mapping of poisoning phases in the Neodymium Nickelate solid oxide fuel cell cathode , 2013 .

[152]  R. Walker,et al.  (Invited) Insights into SOFC Ni/YSZ Anode Degradation Using In-Situ Spectrochronopotentiometrys , 2013 .

[153]  C. Hébert,et al.  Reduction of nickel oxide particles by hydrogen studied in an environmental TEM , 2013, Journal of Materials Science.

[154]  K. Yoon,et al.  Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization , 2013 .

[155]  F. Tietz,et al.  Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation , 2013 .

[156]  D. Favrat,et al.  Progressive activation of degradation processes in solid oxide fuel cells stacks: Part I: Lifetime extension by optimisation of the operating conditions , 2012 .

[157]  Daniel Favrat,et al.  Progressive activation of degradation processes in solid oxide fuel cell stacks: Part II: Spatial distribution of the degradation , 2012 .

[158]  V. Roche,et al.  Ni-8YSZ cermet re-oxidation of anode supported solid oxide fuel cell: From kinetics measurements to mechanical damage prediction , 2012 .

[159]  A. Hessler-Wyser,et al.  Nd-nickelate solid oxide fuel cell cathode sensitivity to Cr and Si contamination , 2012 .

[160]  Aïcha Hessler-Wyser,et al.  A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode , 2012, Membranes.

[161]  F. Doğan,et al.  Effect of the anode microstructure on the enhanced performance of solid oxide fuel cells , 2012 .

[162]  Jan Van herle,et al.  Cr-poisoning in (La,Sr)(Co,Fe)O3 cathodes after 10,000 h SOFC stack testing , 2012 .

[163]  E. Wachsman,et al.  Mechanism of La_0.6Sr_0.4Co_0.2Fe_0.8O_3 cathode degradation , 2012 .

[164]  A. Nakajo,et al.  Compilation of mechanical properties for the structural analysis of solid oxide fuel cell stacks. Constitutive materials of anode-supported cells , 2012 .

[165]  M. Arriortua,et al.  Oxide scale formation on different metallic interconnects for solid oxide fuel cells , 2012 .

[166]  D. Favrat,et al.  Mechanical reliability and durability of SOFC stacks. Part I: Modelling of the effect of operating conditions and design alternatives on the reliability , 2012 .

[167]  D. Favrat,et al.  Mechanical reliability and durability of SOFC stacks. Part II: Modelling of mechanical failures during ageing and cycling , 2012 .

[168]  S. Jensen,et al.  Performance and Durability of Solid Oxide Electrolysis Cells for Syngas Production , 2012, ECS Transactions.

[169]  M. Mogensen,et al.  Impact of Reduction Parameters on the Initial Performance and Stability of Ni/(Sc)YSZ Cermet Anodes for SOFCs , 2012 .

[170]  Mina Nishi,et al.  Degradation Mechanism with Impurities and Life Time Estimation for SOFCs , 2012 .

[171]  M. Laguna-Bercero Recent advances in high temperature electrolysis using solid oxide fuel cells: A review , 2012 .

[172]  Caroline Calderone,et al.  Combined Cr and S poisoning in solid oxide fuel cell cathodes , 2012 .

[173]  Jared W. Templeton,et al.  Lattice Expansion of LSCF-6428 Cathodes Measured by In-situ XRD during SOFC Operation , 2012 .

[174]  C. Wunderlich,et al.  Crofer22 APU in Real SOFC Stacks , 2011 .

[175]  Jan Van herle,et al.  Design of experiment approach applied to reducing and oxidizing tolerance of anode supported solid oxide fuel cell. Part II: Electrical, electrochemical and microstructural characterization of tape-cast cells , 2011 .

[176]  M. Laguna-Bercero,et al.  Micro-spectroscopic study of the degradation of scandia and ceria stabilized zirconia electrolytes i , 2011 .

[177]  Baoan Fan,et al.  The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3-δ as SOFC cathode material , 2011 .

[178]  Leonidas Tsikonis,et al.  Robust Real-Time Optimization of a Solid Oxide Fuel Cell Stack , 2011 .

[179]  Prabhakar Singh,et al.  Advances in Solid Oxide Fuel Cells VII: Ceramic Engineering and Science Proceedings , 2011 .

[180]  A. Hagen,et al.  Durability of solid oxide fuel cells using sulfur containing fuels , 2011 .

[181]  Jan Van herle,et al.  Design of experiment approach applied to reducing and oxidizing tolerance of anode supported solid o , 2011 .

[182]  D. Favrat,et al.  Electrochemical Model of Solid Oxide Fuel Cell for Simulation at the Stack Scale I. Calibration Procedure on Experimental Data , 2011 .

[183]  D. Favrat,et al.  Electrochemical Model of Solid Oxide Fuel Cell for Simulation at the Stack Scale II: Implementation of Degradation Processes , 2011 .

[184]  Boris Iwanschitz,et al.  Quantitative relationships between composition, particle size, triple phase boundary length and surface area in nickel-cermet anodes for Solid Oxide Fuel Cells , 2011 .

[185]  V. Birss,et al.  Crack severity in relation to non-homogeneous Ni oxidation in anode-supported solid oxide fuel cells , 2011 .

[186]  Francois L. E. Usseglio-Viretta,et al.  Creep behaviour of porous SOFC electrodes: Measurement and application to Ni-8YSZ cermets , 2011 .

[187]  D. Favrat,et al.  Sensitivity of Stresses and Failure Mechanisms in SOFCs to the Mechanical Properties and Geometry of the Constitutive Layers , 2011 .

[188]  A. Hagen,et al.  Ni/YSZ electrode degradation studied by impedance spectroscopy — Effect of p(H2O) , 2011 .

[189]  W. Sitte,et al.  Long-term stability of the oxygen exchange properties of (La,Sr)1 − z(Co,Fe)O3 − δ in dry and wet atmospheres , 2011 .

[190]  Juergen Fleig,et al.  Relationship between Cation Segregation and the Electrochemical Oxygen Reduction Kinetics of La0.6Sr0.4CoO3−δ Thin Film Electrodes , 2011 .

[191]  Piero Pianetta,et al.  Comparison of SOFC cathode microstructure quantified using X-ray nanotomography and focused ion beam scanning electron microscopy , 2011 .

[192]  C. Ludwig,et al.  Multi-Scale Assessment of Cr Contamination Levels in SOFC Cathode Environment , 2011 .

[193]  William M. Harris,et al.  X-ray Imaging and Analysis of 3D Microstructural Changes in Aged Ni-YSZ Anode , 2011 .

[194]  J. Laurencin,et al.  Characterization of the Ni-8YSZ Cermet Creep and Its Impact on the Cell 'Redox' Tolerance , 2011 .

[195]  Z. Wuillemin,et al.  Redox stable NiYSZ anode support in solid oxide fuel cell stack configuration , 2011 .

[196]  Z. Wuillemin,et al.  TEM investigation on zirconate formation and chromium poisoning in LSM/YSZ cathode , 2011, Journal of Materials Science.

[197]  Boris Iwanschitz,et al.  Microstructure degradation of cermet anodes for solid oxide fuel cells: Quantification of nickel grain growth in dry and in humid atmospheres , 2011 .

[198]  Z. Wuillemin,et al.  Glass-Forming Exogenous Silicon Contamination in Solid Oxide Fuel Cell Cathodes , 2011 .

[199]  Nobuhide Kasagi,et al.  Study on local morphological changes of nickel in solid oxide fuel cell anode using porous Ni pellet electrode , 2011 .

[200]  Scott A. Barnett,et al.  Simulation of coarsening in three-phase solid oxide fuel cell anodes , 2011 .

[201]  A. Hessler-Wyser,et al.  Cathode thickness-dependent tolerance to Cr-poisoning in solid oxide fuel cells , 2010 .

[202]  Ellen Ivers-Tiffée,et al.  Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells. , 2010, Physical chemistry chemical physics : PCCP.

[203]  Norbert H. Menzler,et al.  Durability of Ni anodes during reoxidation cycles , 2010 .

[204]  A. Maghsoudipour,et al.  Investigation on microstructures of NiO–YSZ composite and Ni–YSZ cermet for SOFCs , 2010 .

[205]  Rafal E. Dunin-Borkowski,et al.  In situ redox cycle of a nickel-YSZ fuel cell anode in an environmental transmission electron microscope , 2010 .

[206]  J. Kilner,et al.  Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells , 2010 .

[207]  Gérard Delette,et al.  Impact of ‘redox’ cycles on performances of solid oxide fuel cells: Case of the electrolyte supported cells , 2010 .

[208]  Bengt Sundén,et al.  Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells , 2010 .

[209]  Douglas G. Ivey,et al.  A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects , 2010 .

[210]  F. Tietz,et al.  Time-Dependent Electrode Performance Changes in Intermediate Temperature Solid Oxide Fuel Cells , 2010 .

[211]  T. Markus,et al.  Investigation of Chromium Vaporization from Interconnector Steels with Spinel Coatings , 2010 .

[212]  J. Van herle,et al.  Nickel–Zirconia Anode Degradation and Triple Phase Boundary Quantification from Microstructural Analysis , 2009 .

[213]  Norbert H. Menzler,et al.  Stack Degradation in Dependence of Operation Parameters; the Real‐SOFC Sensitivity Analysis , 2009 .

[214]  Marco Sorrentino,et al.  Control Oriented Modeling of Solid Oxide Fuel Cell Auxiliary Power Unit for Transportation Applications , 2009 .

[215]  Marco Cannarozzo,et al.  Experimental and Theoretical Investigation of Degradation Mechanisms by Particle Coarsening in SOFC Electrodes , 2009 .

[216]  J. Wagner,et al.  In situ Reduction and Oxidation of Nickel from Solid Oxide Fuel Cells in a Transmission Electron Microscope , 2009, ECS Transactions.

[217]  A. Hagen,et al.  Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs , 2009, ECS Transactions.

[218]  Z. Wuillemin,et al.  Sulfur as Pollutant Species on the Cathode Side of a SOFC System , 2009 .

[219]  Daniel Favrat,et al.  Locally-Resolved Study of Degradation in a SOFC Repeat-Element , 2009 .

[220]  Andrew M. Colclasure,et al.  Modeling Electrochemical Oxidation of Hydrogen on Ni–YSZ Pattern Anodes , 2009 .

[221]  Daniel Favrat,et al.  Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: Loss of gas-tightness, electrical contact and thermal buckling , 2009 .

[222]  A. Nakajo,et al.  RedOx study of anode-supported solid oxide fuel cell , 2009 .

[223]  Daniel Favrat,et al.  Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part I: Probability of failure of the cells , 2009 .

[224]  Mogens Bjerg Mogensen,et al.  Redox stability of SOFC: Thermal analysis of Ni-YSZ composites , 2009 .

[225]  B. Morel,et al.  Solid Oxide Fuel Cells damage mechanisms due to Ni-YSZ re-oxidation: Case of the Anode Supported Cell , 2009 .

[226]  Roger A. Dougal,et al.  Multiple model predictive control for a hybrid proton exchange membrane fuel cell system , 2009 .

[227]  W. Bessler,et al.  Modelling Study of Surface Reactions, Diffusion, and Spillover at a Ni/YSZ Patterned Anode , 2009 .

[228]  Hans Peter Buchkremer,et al.  Element interdiffusion at electrolyte–cathode interfaces in ceramic high-temperature fuel cells , 2009 .

[229]  Xin Sun,et al.  Life prediction of coated and uncoated metallic interconnect for solid oxide fuel cell applications , 2009 .

[230]  J. Van herle,et al.  Neodymium-deficient nickelate oxide Nd1.95NiO4+δ as cathode material for anode-supported intermediate temperature solid oxide fuel cells , 2008 .

[231]  S. Jensen,et al.  Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode , 2008 .

[232]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[233]  W. Gong,et al.  Cyclic oxidation of Mn–Co spinel coated SUS 430 alloy in the cathodic atmosphere of solid oxide fuel cells , 2008 .

[234]  M. Mogensen,et al.  Electrochemical performance and degradation of (La0.6Sr0.4)0.99CoO3 − δ as porous SOFC-cathode , 2008 .

[235]  F. Tietz,et al.  From powder properties to fuel cell performance – A holistic approach for SOFC cathode development , 2008 .

[236]  Randall Gemmen,et al.  Degradation measurement and analysis for cells and stacks , 2008 .

[237]  M. Zahid,et al.  Ageing of anode-supported solid oxide fuel cell stacks including thermal cycling, and expansion behaviour of MgO–NiO anodes , 2008 .

[238]  Boris Iwanschitz,et al.  Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .

[239]  D. Brett,et al.  Intermediate temperature solid oxide fuel cells. , 2008, Chemical Society reviews.

[240]  D. Leung,et al.  Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC) , 2008 .

[241]  J. Laurencin,et al.  Impact of cell design and operating conditions on the performances of SOFC fuelled with methane , 2008 .

[242]  Daniel Favrat,et al.  Modeling and Study of the Influence of Sealing on a Solid Oxide Fuel Cell , 2008 .

[243]  Norbert H. Menzler,et al.  Materials Development for Advanced Planar Solid Oxide Fuel Cells , 2007 .

[244]  V. A. C. Haanappel,et al.  A review of standardising SOFC measurement and quality assurance at FZJ , 2007 .

[245]  K. Karan,et al.  Engineering of microstructure and design of a planar porous composite SOFC cathode: A numerical analysis , 2007 .

[246]  Daniel Favrat,et al.  Simulation of SOFC stack and repeat elements including interconnect degradation and anode reoxidation risk , 2006 .

[247]  M. Engelhard,et al.  Degradation Mechanisms of La – Sr – Co – Fe – O3 SOFC Cathodes , 2006 .

[248]  Stefano Ubertini,et al.  Modeling solid oxide fuel cell operation: Approaches, techniques and results , 2006 .

[249]  J. Cerdá,et al.  Adhesion at metal–ZrO2 interfaces , 2006 .

[250]  Peter Vang Hendriksen,et al.  Degradation of Anode Supported SOFCs as a Function of Temperature and Current Load , 2006 .

[251]  Jürgen Fleig,et al.  Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes , 2006 .

[252]  Nishant M. Tikekar,et al.  Reduction and Reoxidation Kinetics of Nickel-Based SOFC Anodes , 2006 .

[253]  J. Sehested,et al.  Four challenges for nickel steam-reforming catalysts , 2006 .

[254]  M. Mogensen,et al.  The Mechanism Behind Redox Instability of Anodes in High-Temperature SOFCs , 2005 .

[255]  Rolf W. Steinbrech,et al.  Reduction and re-oxidation of anodes for solid oxide fuel cells , 2005 .

[256]  Andreas Mai,et al.  Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells. Part I. Variation of composition , 2005 .

[257]  F. Tietz,et al.  Interfacial properties and structure stability of Ni/Y2 O3-ZrO2-TiO2 cermet anodes for solid oxide fuel cells , 2005 .

[258]  J. Fergus Metallic interconnects for solid oxide fuel cells , 2005 .

[259]  Douglas G. Ivey,et al.  Thermal analysis of the cyclic reduction and oxidation behaviour of SOFC anodes , 2005 .

[260]  L. C. Jonghe,et al.  Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties , 2005 .

[261]  Joyce Smith Cooper,et al.  Taxonomies of SOFC material and manufacturing alternatives , 2005 .

[262]  M. Watanabe,et al.  High-Performance Electrode for Steam Electrolysis Mixed Conducting Ceria-Based Cathode with Highly-Dispersed Ni Electrocatalysts , 2004 .

[263]  L. Singheiser,et al.  Oxidation limited life times of chromia forming ferritic steels , 2004 .

[264]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[265]  J. Svensson,et al.  Effect of Water-Vapor-Induced Cr Vaporization on the Oxidation of Austenitic Stainless Steels at 700 and 900°C Influence of Cr/Fe Ratio in Alloy and Ce Additions , 2004 .

[266]  K. S. Weil,et al.  Selection and Evaluation of Heat-Resistant Alloys for SOFC Interconnect Applications , 2003 .

[267]  I. Vinke,et al.  Reaction of hydrogen/water mixtures on nickel-zirconia cermet electrodes. II. AC polarization characteristics , 1999 .

[268]  de Boer SOFC anode: hydrogen oxidation at porous nickel and nickel/zirconia electrodes , 1998 .

[269]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[270]  M. Finnis,et al.  The theory of metal - ceramic interfaces , 1996 .

[271]  T. Takagi,et al.  Kinetic studies of the reaction at the nickel pattern electrode on YSZ in H2H2O atmospheres , 1994 .

[272]  R. Huggins Solid State Ionics , 1989 .

[273]  H. S. Spacil,et al.  Electrochemical Dissociation of Water Vapor in Solid Oxide Electrolyte Cells I . Thermodynamics and Cell Characteristics , 1969 .

[274]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[275]  C. Wagner Theoretical Analysis of the Diffusion Processes Determining the Oxidation Rate of Alloys , 1952 .

[276]  W. C. Heraeus,et al.  Über die elektrolytische Leitung fester Körper bei sehr hohen Temperaturen , 1899 .

[277]  N. Menzler,et al.  A Detailed Post Mortem Analysis of Solid Oxide Electrolyzer Cells after Long-Term Stack Operation , 2018 .

[278]  S. Barnett,et al.  Degradation mechanisms of porous La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O3-δ solid oxide fuel cell cathodes , 2018 .

[279]  Gregory A. Hackett,et al.  Performance Degradation Predictions Based on Microstructural Evolution Due to Grain Coarsening Effects in Solid Oxide Fuel Cell Electrodes , 2018 .

[280]  M. Cantoni,et al.  Characterization of Solid Oxide Electrolysis Cells by Advanced FIB-SEM Tomography , 2017 .

[281]  Rak-Hyun Song,et al.  Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: A review , 2016 .

[282]  R. Steinberger‐Wilckens,et al.  University of Birmingham The Effect of Chemical Composition on High Temperature Behaviour of Fe and Cu Doped Mn-Co spinels , 2016 .

[283]  J. Bassat,et al.  Application of the Adler-Lane-Steele Model to Porous La2NiO4+δ SOFC Cathode: Influence of Interfaces with Gadolinia Doped Ceria , 2016 .

[284]  S. Barnett,et al.  Mechanisms of Performance Degradation of (La,Sr)(Co,Fe)O3-δ Solid Oxide Fuel Cell Cathodes , 2016 .

[285]  S. Jensen,et al.  Characterization of a Planar Solid Oxide Cell Stack Operated at Elevated Pressure , 2016 .

[286]  Xiongwen Zhang,et al.  Effect of Sr Surface Segregation of La0.6Sr0.4Co0.2Fe0.8O3 − δElectrode on Its Electrochemical Performance in SOC , 2015 .

[287]  Q. Jeangros In situ TEM study of reduction and reoxidation of NiO/ceramic composites , 2014 .

[288]  Siglas de Palabras a D. g. , 2013 .

[289]  J. Bassat,et al.  Novel cathodes for solid oxide fuel cells , 2012 .

[290]  Z. Jiao,et al.  Quantitative Study on the Correlation between Solid Oxide Fuel Cell Ni-YSZ Composite Anode Performance and Reduction Temperature Based on Three-Dimensional Reconstruction , 2012 .

[291]  S. Baek,et al.  Anodic behavior of 8Y2O3–ZrO2/NiO cermet using an anode-supported electrode , 2011 .

[292]  D. Favrat,et al.  Current State of Models for the Prediction of Mechanical Failures in Solid Oxide Fuel Cells , 2010 .

[293]  Gérard Delette,et al.  A numerical tool to estimate SOFC mechanical degradation: Case of the planar cell configuration , 2008 .

[294]  Daniel Favrat,et al.  Modeling and experimental validation of solid oxide fuel cell materials and stacks , 2005 .

[295]  K. Andreassen Hydrogen Production by Electrolysis , 1998 .

[296]  Roderick Murray-Smith,et al.  Multiple Model Approaches to Modelling and Control , 1997 .

[297]  R. Streicher,et al.  Hydrogen production by high temperature electrolysis of water vapour , 1980 .

[298]  Keith Wipke,et al.  MODEL SELECTION CRITERIA , 2022 .

[299]  Seung Choi,et al.  ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? J ? ? J ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2022 .