Program objectives and specifications for the Ultra-Fast Astronomy observatory

We present program objectives and specifications for the first generation Ultra-Fast Astronomy (UFA) observatory which will explore a new astrophysical phase space by characterizing the variability of the optical (320 nm - 650 nm) sky in the millisecond to nanosecond timescales. One of the first objectives of the UFA observatory will be to search for optical counterparts to fast radio bursts (FRB) that can be used to identify the origins of FRB and probe the epoch of reionization and baryonic matter in the interstellar and intergalactic mediums. The UFA camera will consist of two single-photon resolution fast-response detector 16x16 arrays operated in coincidence mounted on the 0.7 meter Nazarbayev University Transient Telescope at the Assy-Turgen Astrophysical Observatory (NUTTelA-TAO) located near Almaty, Kazakhstan. We are currently developing two readout systems that can measure down to the microsecond and nanosecond timescales and characterizing two silicon photomultipliers (SiPM) and one photomultiplier tube (PMT) to compare the detectors for the UFA observatory and astrophysical observations in general.

[1]  P. M'esz'aros,et al.  COSMOLOGICAL FAST RADIO BURSTS FROM BINARY WHITE DWARF MERGERS , 2013, 1307.7708.

[2]  S. Eikenberry,et al.  High Time Resolution Infrared Observations of the Crab Nebula Pulsar and the Pulsar Emission Mechanism , 1997 .

[3]  Dan Werthimer,et al.  Panoramic optical and near-infrared SETI instrument: overall specifications and science program , 2018, Astronomical Telescopes + Instrumentation.

[4]  G. Smoot,et al.  The emission mechanism of gamma-ray bursts: Identification via optical-IR slope measurements , 2019, Journal of High Energy Astrophysics.

[5]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[6]  U. Pen,et al.  Non-cosmological FRBs from young supernova remnant pulsars , 2015, 1505.05535.

[7]  Shelley A. Wright,et al.  Detector characterization of a near-infrared discrete avalanche photodiode 5×5 array for astrophysical observations , 2019, Defense + Commercial Sensing.

[8]  M. Mclaughlin,et al.  A Bright Millisecond Radio Burst of Extragalactic Origin , 2007, Science.

[9]  Nrl,et al.  A repeating fast radio burst , 2016, Nature.

[10]  The CHIMEFRB Collaboration,et al.  A second source of repeating fast radio bursts , 2019 .

[11]  Wenbin Lu,et al.  Fast radio burst source properties and curvature radiation model , 2017, 1703.06139.

[12]  Y. F. Huang,et al.  FAST RADIO BURSTS: COLLISIONS BETWEEN NEUTRON STARS AND ASTEROIDS/COMETS , 2015, 1502.05171.

[13]  J. Cordes,et al.  Supergiant pulses from extragalactic neutron stars , 2015, 1501.00753.

[14]  D. Malesani,et al.  A search for optical bursts from the repeating fast radio burst FRB 121102 , 2017, 1708.06156.

[15]  M. Halpern,et al.  Observations of fast radio bursts at frequencies down to 400 megahertz , 2019, Nature.

[16]  H. Falcke,et al.  Fast radio bursts: the last sign of supramassive neutron stars , 2013, 1307.1409.

[17]  S. Burke-Spolaor,et al.  A Population of Fast Radio Bursts at Cosmological Distances , 2013, Science.

[18]  M. Shafiee,et al.  Experimental performance evaluation of ILSF BPM data acquisition system , 2017 .

[19]  Anthony L. Piro,et al.  THE IMPACT OF A SUPERNOVA REMNANT ON FAST RADIO BURSTS , 2016, 1604.04909.

[20]  George F. Smoot,et al.  Characterization of a silicon photomultiplier for the Ultra-Fast Astronomy telescope , 2019, Optical Engineering + Applications.

[21]  B. Mot,et al.  The JEM-EUSO mission: An introduction , 2015 .

[22]  Charles M. Coldwell,et al.  Targeted and all-sky search for nanosecond optical pulses at Harvard-Smithsonian , 2001, SPIE LASE.

[23]  J. Gallicchio,et al.  Testing the Weak Equivalence Principle Using Optical and Near-infrared Crab Pulses , 2018, The Astrophysical Journal.

[24]  Charles M. Coldwell,et al.  Initial Results from Harvard All-sky Optical SETI , 2006 .

[25]  U. Pen,et al.  LOCAL CIRCUMNUCLEAR MAGNETAR SOLUTION TO EXTRAGALACTIC FAST RADIO BURSTS , 2015, 1501.01341.

[26]  M. Kramer,et al.  FRBCAT: The Fast Radio Burst Catalogue , 2016, Publications of the Astronomical Society of Australia.

[27]  M. Shafiee,et al.  Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system , 2016 .

[28]  J. Emilio Enriquez,et al.  Highest Frequency Detection of FRB 121102 at 4–8 GHz Using the Breakthrough Listen Digital Backend at the Green Bank Telescope , 2018, The Astrophysical Journal.