A high rate n-of-m speech processing strategy for the first generation Clarion cochlear implant

Abstract An n-of-m speech coding strategy has been developed for the Clarion Cochlear Implant Series 1.x (1.0 & 1.2). The basic principle is to reduce the number of stimuli per cycle, by neglecting the less significant spectral components, and to concentrate on the more dominant frequency bands. In this study 20 subjects, implanted with a Clarion device, used an n-of-m strategy at 1666 pps per channel. The outcomes using this strategy were compared with the outcomes using conventional processing (CIS at 833 pps/channel). Eight of the 20 subjects underwent additional testing with the n-of-m strategy with the rate set at 833 pps/channel. Using the n-of-m strategy at 1666 pps showed statistically significant improvement in performance over the CIS strategy, with 16 of the 20 subjects achieving better results. However, there was no statistically meaningful difference in performance between n-of-m at 833 pps and the CIS strategy running at the same rate. Results therefore suggest that n-of-m strategy can be an alternative to CIS, particularly when the implant hardware limits the overall stimulation rate. Sumario Se ha desarrollado una estrategia n-of-m de codificación del lenguaje para el implante coclear Clarion en sus series 1 × (1.0 & 1.2). El principio básico es reducir el número de estímulos por ciclo, abandonando los componentes espectrales menos significativos y concentrándose en las bandas de frecuencia más dominantes. En este estudio 20 sujetos implantados con un Clarion, usaron una estrategia n-of-m a 1666 pps por canal. Los resultados con el uso de esta estrategia se compararon con los obtenidos al usar procesamiento convencional (CIS a 833 pps/ canal).Ocho de los 20 sujetos realizaron pruebas adicionales con la estrategia n-of-m a una tasa de 833 pps/canal. El uso de la estrategia n-of-m a 1666 pps mostró una mejoría estadísticamente significativa en el rendimiento, en comparación con la estrategia CIS, en 16 de los 20 sujetos que obtuvieron mejores resultados. No obstante, no hubo una diferencia estadísticamente significativa en el rendimiento entre la condición de 833 pps y la estrategia CIS, practicadas a la misma tasa. Los resultados sugieren por consiguiente que la estrategia n-of-m puede ser una alternativa de la CIS, particularmente cuando el equipo limita la tasa total de estimulación.

[1]  H J McDermott,et al.  A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant. , 1992, The Journal of the Acoustical Society of America.

[2]  I. Hochmair-Desoyer,et al.  The HSM sentence test as a tool for evaluating the speech understanding in noise of cochlear implant users. , 1997, The American journal of otology.

[3]  Philipos C Loizou,et al.  Speech processing in vocoder-centric cochlear implants. , 2006, Advances in oto-rhino-laryngology.

[4]  Ruth A Bentler,et al.  Predictive Measures of Directional Benefit Part 2: Verification of Different Approaches to Estimating Directional Benefit , 2007, Ear and hearing.

[5]  P Seligman,et al.  Architecture of the Spectra 22 speech processor. , 1995, The Annals of otology, rhinology & laryngology. Supplement.

[6]  Philipos C Loizou,et al.  Comparison of Speech Processing Strategies Used in the Clarion Implant Processor , 2003, Ear and hearing.

[7]  Mark Downing,et al.  Using Current Steering to Increase Spectral Resolution in CII and HiRes 90K Users , 2007, Ear and hearing.

[8]  Robert S Hong,et al.  Signal Coding in Cochlear Implants: Exploiting Stochastic Effects of Electrical Stimulation , 2003, The Annals of otology, rhinology & laryngology. Supplement.

[9]  Joseph Roberson,et al.  Nucleus Freedom North American Clinical Trial , 2007, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[10]  Q J Fu,et al.  Effects of Dynamic Range and Amplitude Mapping on Phoneme Recognition in Nucleus‐22 Cochlear Implant Users , 2000, Ear and hearing.

[11]  P. Jusczyk,et al.  Speech Perception and Spoken Word Recognition: Past and Present , 2002, Ear and hearing.

[12]  William M. Rabinowitz,et al.  Better speech recognition with cochlear implants , 1991, Nature.

[13]  A E Vandali,et al.  Emphasis of short-duration acoustic speech cues for cochlear implant users. , 2001, The Journal of the Acoustical Society of America.

[14]  Yi Hu,et al.  A new sound coding strategy for suppressing noise in cochlear implants. , 2008, The Journal of the Acoustical Society of America.

[15]  Thomas Lenarz,et al.  Evaluation of Advanced Bionics high resolution mode , 2006, International journal of audiology.

[16]  Thomas Lenarz,et al.  Evaluation of the Harmony Soundprocessor in Combination With the Speech Coding Strategy HiRes 120 , 2008, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[17]  T. Lenarz,et al.  Performance and Preference for ACE Stimulation Rates Obtained with Nucleus RP 8 and Freedom System , 2007, Ear and hearing.

[18]  Colleen Psarros,et al.  Speech Recognition with the Nucleus 24 SPEAK, ACE, and CIS Speech Coding Strategies in Newly Implanted Adults , 2002, Ear and hearing.

[19]  Margaret W Skinner,et al.  Nucleus® 24 Advanced Encoder Conversion Study: Performance versus Preference , 2002, Ear and hearing.

[20]  Thomas Lenarz,et al.  Simultaneous Analog Stimulation (SAS)–Continuous Interleaved Sampler (CIS) Pilot Comparison Study in Europe , 1999, The Annals of otology, rhinology & laryngology. Supplement.

[21]  C. Gaelyn Garrett,et al.  Ablation of Teflon Granulomas in the Canine Larynx with the Free-Electron Laser , 1999, The Annals of otology, rhinology, and laryngology.

[22]  P. L. Arndt Within subject comparison of advanced coding strategies in the Nucleus 24 cochlear implant , 1999 .

[23]  H N Kim,et al.  Benefit of ACE compared to CIS and SPEAK coding strategies. , 2000, Advances in oto-rhino-laryngology.

[24]  Michael F Dorman,et al.  Effects of Minimum Stimulation Settings for the Med El Tempo+ Speech Processor on Speech Understanding , 2005, Ear and hearing.

[25]  E. Zwicker,et al.  Audio engineering and psychoacoustics: matching signals to the final receiver, the human auditory system , 1991 .

[26]  Jan Kiefer,et al.  Optimized Speech Understanding with the Continuous Interleaved Sampling Speech Coding Strategy in Patients with Cochlear Implants: Effect of Variations in Stimulation Rate and Number of Channels , 2000, The Annals of otology, rhinology, and laryngology.

[27]  Marco Pelizzone,et al.  Electrical field interactions in different cochlear implant systems. , 2003, The Journal of the Acoustical Society of America.

[28]  Robert Friedrich,et al.  Audio Compression for Network Transmission , 1996 .

[29]  Philipos C. Loizou,et al.  Effects of electrode design and configuration on channel interactions , 2006, Hearing Research.

[30]  Thomas Lenarz,et al.  Results from a Psychoacoustic Model-Based Strategy for the Nucleus-24 and Freedom Cochlear Implants , 2008, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[31]  E. Javel,et al.  Stochastic properties of cat auditory nerve responses to electric and acoustic stimuli and application to intensity discrimination. , 2000, The Journal of the Acoustical Society of America.

[32]  Paul J. Abbas,et al.  Channel Interaction in Cochlear Implant Users Evaluated Using the Electrically Evoked Compound Action Potential , 2004, Audiology and Neurotology.

[33]  D T Lawson,et al.  Temporal representations with cochlear implants. , 1997, The American journal of otology.

[34]  Gerhard Stoll,et al.  ISO-MPEG-1 Audio: A Generic Standard for Coding of High-: Quality Digital Audio , 1994 .

[35]  H J McDermott,et al.  Perceptual Performance of Subjects with Cochlear Implants Using the Spectral Maxima Sound Processor (SMSP) and the Mini Speech Processor (MSP) , 1993, Ear and hearing.

[36]  H J McDermott,et al.  Evaluation of the Nucleus Spectra 22 processor and new speech processing strategy (SPEAK) in postlinguistically deafened adults. , 1995, Acta oto-laryngologica.

[37]  Robert K. Shepherd,et al.  Electrical stimulation of the auditory nerve III. Response initiation sites and temporal fine structure , 2000, Hearing Research.

[38]  Susan Zimmerman-Phillips,et al.  Programming Features of the Clarion® Multi-Strategy™ Cochlear Implant , 1999, The Annals of otology, rhinology & laryngology. Supplement.

[39]  J K Shallop,et al.  Evaluation of a new spectral peak coding strategy for the Nucleus 22 Channel Cochlear Implant System. , 1994, The American journal of otology.

[40]  M. J. Osberger,et al.  SAS-CIS Preference Study in Postlingually Deafened Adults Implanted with the Clarion® Cochlear Implant , 1999, The Annals of otology, rhinology & laryngology. Supplement.

[41]  M. Dorman,et al.  The effect of parametric variations of cochlear implant processors on speech understanding. , 2000, The Journal of the Acoustical Society of America.

[42]  Thomas Lenarz,et al.  A Psychoacoustic "NofM"-Type Speech Coding Strategy for Cochlear Implants , 2005, EURASIP J. Adv. Signal Process..