Non-holonomic integrators

We introduce a discretization of the Lagrange-d'Alembert principle for Lagrangian systems with non-holonomic constraints, which allows us to construct numerical integrators that approximate the continuous flow. We study the geometric invariance properties of the discrete flow which provide an explanation for the good performance of the proposed method. This is tested on two examples: a non-holonomic particle with a quadratic potential and a mobile robot with fixed orientation.

[1]  J. Marsden,et al.  Symplectic-energy-momentum preserving variational integrators , 1999 .

[2]  Jerrold E. Marsden,et al.  Geometric mechanics, Lagrangian reduction, and nonholonomic systems , 2001 .

[3]  O. Gonzalez Mechanical systems subject to holonomic constraints: differential—algebraic formulations and conservative integration , 1999 .

[4]  A. Bobenko,et al.  Discrete Time Lagrangian Mechanics on Lie Groups,¶with an Application to the Lagrange Top , 1999 .

[5]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[6]  L. Jay Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems , 1996 .

[7]  M. Karasev,et al.  Poisson manifolds and the schouten bracket , 1988 .

[8]  Richard M. Murray,et al.  Geometric phases and robotic locomotion , 1995, J. Field Robotics.

[9]  B. Leimkuhler,et al.  Symplectic Numerical Integrators in Constrained Hamiltonian Systems , 1994 .

[10]  Charles-Michel Marle,et al.  Reduction of constrained mechanical systems and stability of relative equilibria , 1995 .

[11]  A. Veselov Integrable discrete-time systems and difference operators , 1988 .

[12]  David Martín de Diego,et al.  Reduction of nonholonomic mechanical systems with symmetries , 1998 .

[13]  David Martín de Diego,et al.  On the geometry of non‐holonomic Lagrangian systems , 1996 .

[14]  J. Marsden,et al.  Mechanical integrators derived from a discrete variational principle , 1997 .

[15]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[16]  Jerrold E. Marsden,et al.  The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems , 1997 .

[17]  J. Cortes,et al.  On the geometry of generalized Chaplygin systems , 2002, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  S. Reich Symplectic integration of constrained Hamiltonian systems by composition methods , 1996 .

[19]  Reich Sebastian,et al.  Symplectic Integration of Constrained Hamiltonian Systems by Runge-Kutta Methods , 1993 .

[20]  J. Koiller Reduction of some classical non-holonomic systems with symmetry , 1992 .

[21]  John C. Baez,et al.  An algebraic approach to discrete mechanics , 1994 .

[22]  A. Veselov,et al.  Integrable Lagrangian correspondences and the factorization of matrix polynomials , 1991 .

[23]  Charles-Michel Marle,et al.  Symplectic geometry and analytical mechanics , 1987 .

[24]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[25]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[26]  C. Scovel,et al.  A survey of open problems in symplectic integration , 1993 .

[27]  J. Marsden,et al.  Discrete Euler-Poincaré and Lie-Poisson equations , 1999, math/9909099.

[28]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[29]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[30]  Jorge Cortes,et al.  Reduction and reconstruction of the dynamics of nonholonomic systems , 1999 .

[31]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[32]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[33]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[34]  B. Leimkuhler,et al.  Symplectic integration of constrained Hamiltonian systems , 1994 .