Plants and animals share functionally common bacterial virulence factors.

By exploiting the ability of Pseudomonas aeruginosa to infect a variety of vertebrate and nonvertebrate hosts, we have developed model systems that use plants and nematodes as adjuncts to mammalian models to help elucidate the molecular basis of P. aeruginosa pathogenesis. Our studies reveal a remarkable degree of conservation in the virulence mechanisms used by P. aeruginosa to infect hosts of divergent evolutionary origins.

[1]  F. Ausubel,et al.  Positive Correlation between Virulence ofPseudomonas aeruginosa Mutants in Mice and Insects , 2000, Journal of bacteriology.

[2]  F. Ausubel,et al.  Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. , 2000, Current opinion in microbiology.

[3]  E. Greenberg,et al.  Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  F. Ausubel,et al.  Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Roger S Smith,et al.  Roles of Pseudomonas aeruginosa las andrhl Quorum-Sensing Systems in Control of Twitching Motility , 1999, Journal of bacteriology.

[6]  B. Iglewski,et al.  Active Efflux and Diffusion Are Involved in Transport of Pseudomonas aeruginosa Cell-to-Cell Signals , 1999, Journal of bacteriology.

[7]  B. Finlay,et al.  Bacterial Disease in Diverse Hosts , 1999, Cell.

[8]  R. Medzhitov,et al.  The Toll-receptor family and control of innate immunity. , 1999, Current opinion in immunology.

[9]  F. Ausubel,et al.  Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Frederick M. Ausubel,et al.  Molecular Mechanisms of Bacterial Virulence Elucidated Using a Pseudomonas aeruginosa– Caenorhabditis elegans Pathogenesis Model , 1999, Cell.

[11]  A. Boronin,et al.  A Seven-Gene Locus for Synthesis of Phenazine-1-Carboxylic Acid by Pseudomonas fluorescens2-79 , 1998, Journal of bacteriology.

[12]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[13]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[14]  F. Ausubel,et al.  Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[15]  W. Fuqua,et al.  Evidence of autoinducer activity in naturally occurring biofilms. , 1997, FEMS microbiology letters.

[16]  S Falkow,et al.  Copyright © 1997, American Society for Microbiology Common Themes in Microbial Pathogenicity Revisited , 2022 .

[17]  S Falkow,et al.  Microbial pathogenesis: genomics and beyond. , 1997, Science.

[18]  C. Reimmann,et al.  The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N‐butyryl‐homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase , 1997, Molecular microbiology.

[19]  Guy Plunkett,et al.  Novel phosphotransferase-encoding genes revealed by analysis of the Escherichia coli genome: a chimeric gene encoding an Enzyme I homologue that possesses a putative sensory transduction domain. , 1996, Gene.

[20]  J. D. Morris,et al.  Role of Epstein-Barr virus gene latent membrane protein in nasopharyngeal carcinoma. , 1996, Trends in microbiology.

[21]  F. Ausubel,et al.  Common virulence factors for bacterial pathogenicity in plants and animals. , 1995, Science.

[22]  M. Watarai,et al.  Disulfide oxidoreductase activity of Shigella flexneri is required for release of Ipa proteins and invasion of epithelial cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[23]  F. Barras,et al.  Differential effect of dsbA and dsbC mutations on extracellular enzyme secretion in Erwinia chrysanthemi , 1995, Molecular microbiology.

[24]  D. K. Willis,et al.  Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae , 1994, Journal of bacteriology.

[25]  S. Hill,et al.  Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. , 1994, Molecular plant-microbe interactions : MPMI.

[26]  C. Ryan,et al.  A quantitative model of invasive Pseudomonas infection in burn injury. , 1994, The Journal of burn care & rehabilitation.

[27]  A. Menon,et al.  In vivo and in vitro nickel-dependent processing of the [NiFe] hydrogenase in Azotobacter vinelandii , 1994, Journal of bacteriology.

[28]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[29]  L. Debarbieux,et al.  Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae , 1993, Molecular microbiology.

[30]  P. Reeves,et al.  The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. , 1993, The EMBO journal.

[31]  M. Gambello,et al.  Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. , 1993, Science.

[32]  R. Taylor,et al.  Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. K. Willis,et al.  The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators , 1992, Journal of bacteriology.

[34]  M. Vasil,et al.  Osmoprotectants and phosphate regulate expression of phospholipase C in Pseudomonas aeruginosa , 1992, Molecular microbiology.

[35]  C. Keel,et al.  Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Beckwith,et al.  Identification of a protein required for disulfide bond formation in vivo , 1991, Cell.

[37]  D. Galloway,et al.  Pseudomonas aeruginosa elastase and elastolysis revisited: recent developments , 1991, Molecular microbiology.

[38]  S. Silver Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology , 1990 .

[39]  D. Galloway,et al.  Purification and characterization of an active fragment of the LasA protein from Pseudomonas aeruginosa: enhancement of elastase activity , 1990, Journal of bacteriology.

[40]  I. Crawford,et al.  Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications , 1990, Journal of bacteriology.

[41]  T. Pitt Lipopolysaccharide and virulence of Pseudomonas aeruginosa. , 1989, Antibiotics and chemotherapy.

[42]  M. Vasil,et al.  Analysis of transcription of the exotoxin A gene of Pseudomonas aeruginosa , 1986, Journal of bacteriology.

[43]  S. Lory Effect of iron on accumulation of exotoxin A-specific mRNA in Pseudomonas aeruginosa , 1986, Journal of bacteriology.

[44]  P. Cuatrecasas,et al.  Rapid formation of diacylglycerol from phosphatidylcholine: a pathway for generation of a second messenger. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[45]  B. Iglewski,et al.  Production of elastase and other exoproducts by environmental isolates of Pseudomonas aeruginosa , 1986, Journal of clinical microbiology.

[46]  D. Dearborn,et al.  In vitro inhibition of lymphocyte proliferation by Pseudomonas aeruginosa phenazine pigments , 1983, Infection and immunity.

[47]  R. Berka,et al.  Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa: purification and preliminary characterization , 1982, Journal of bacteriology.

[48]  S. Cryz,et al.  Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase , 1980, Journal of bacteriology.

[49]  R. E. Wood Pseudomonas: the compromised host. , 1976, Hospital practice.

[50]  D. Kabat,et al.  NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin,. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[51]  K. Morihara,et al.  Effects of protease and elastase from Pseudomonas aeruginosa on skin. , 1975, The Japanese journal of experimental medicine.

[52]  B. Postic,et al.  Introduction of Pseudomonas aeruginosa into a Hospital via Vegetables , 1972, Applied microbiology.

[53]  BOTANiCAL Gazette,et al.  Phytopathology , 1929, Botanical Gazette.

[54]  S. Silver Pseudomonas aeruginosa as an opportunistic pathogen , 1994 .

[55]  R. Fick,et al.  Pseudomonas aeruginosa, the opportunist : pathogenesis and disease , 1993 .

[56]  M. Bendinelli,et al.  Pseudomonas aeruginosa as an Opportunistic Pathogen , 1993, Infectious Agents and Pathogenesis.

[57]  D. K. Willis,et al.  Involvement of the lemA gene in production of Syringomycin and protease by Pseudomonas syringae pv. syringae , 1993 .

[58]  A. Neely,et al.  The role of proteases in Pseudomonas infections in burns: a current hypothesis. , 1991, Antibiotics and Chemotherapy.

[59]  B. Iglewski,et al.  Molecular basis of bacterial pathogenesis , 1990 .

[60]  D. Anderson,et al.  The use of transposon mutagenesis in the isolation of nutritional and virulence mutants in two pathovars of Pseudomonas syringae , 1985 .

[61]  J. Cho Ornamental Plants as Carriers of Pseudomonas aeruginosa , 1975 .