Reconfigurable Complementary Monolayer MoTe2 Field-Effect Transistors for Integrated Circuits.

Transition metal dichalcogenides are of interest for next generation switches, but the lack of low resistance electron and hole contacts in the same material has hindered the development of complementary field-effect transistors and circuits. We demonstrate an air-stable, reconfigurable, complementary monolayer MoTe2 field-effect transistor encapsulated in hexagonal boron nitride, using electrostatically doped contacts. The introduction of a multigate design with prepatterned bottom contacts allows us to independently achieve low contact resistance and threshold voltage tuning, while also decoupling the Schottky contacts and channel gating. We illustrate a complementary inverter and a p-i-n diode as potential applications.

[1]  Ulrich Hilleringmann,et al.  Complementary field-effect transistors for flexible electronics , 2017, Conference on Sensors, MEMS and Electro-Optic Systems.

[2]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[3]  Kazuhito Tsukagoshi,et al.  Carrier Polarity Control in α-MoTe2 Schottky Junctions Based on Weak Fermi-Level Pinning. , 2016, ACS applied materials & interfaces.

[4]  S. Banerjee,et al.  van der Waals Heterostructures with High Accuracy Rotational Alignment. , 2016, Nano letters.

[5]  S. Banerjee,et al.  Shubnikov-de Haas Oscillations of High-Mobility Holes in Monolayer and Bilayer WSe_{2}: Landau Level Degeneracy, Effective Mass, and Negative Compressibility. , 2016, Physical review letters.

[6]  N. Koratkar,et al.  Aging of Transition Metal Dichalcogenide Monolayers. , 2016, ACS nano.

[7]  T. Palacios,et al.  High-Performance WSe 2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits , 2016 .

[8]  Amritesh Rai,et al.  High-Mobility Holes in Dual-Gated WSe2 Field-Effect Transistors. , 2015, ACS nano.

[9]  T. Palacios,et al.  High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits. , 2015, Nano letters.

[10]  Amritesh Rai,et al.  Air Stable Doping and Intrinsic Mobility Enhancement in Monolayer Molybdenum Disulfide by Amorphous Titanium Suboxide Encapsulation. , 2015, Nano letters.

[11]  F Schwierz,et al.  Two-dimensional materials and their prospects in transistor electronics. , 2015, Nanoscale.

[12]  J. Robertson,et al.  Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts , 2015 .

[13]  A. Suslu,et al.  Environmental Changes in MoTe2 Excitonic Dynamics by Defects-Activated Molecular Interaction. , 2015, ACS nano.

[14]  Li Tao,et al.  Toward air-stable multilayer phosphorene thin-films and transistors , 2014, Scientific Reports.

[15]  K. Banerjee,et al.  2D crystal semiconductors: Intimate contacts. , 2014, Nature materials.

[16]  Claudia Ruppert,et al.  Optical properties and band gap of single- and few-layer MoTe2 crystals. , 2014, Nano letters.

[17]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[18]  Madan Dubey,et al.  High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors , 2014 .

[19]  M. Terrones,et al.  Field-effect transistors based on few-layered α-MoTe(2). , 2014, ACS nano.

[20]  Yuping Zeng,et al.  High-gain inverters based on WSe2 complementary field-effect transistors. , 2014, ACS nano.

[21]  S. Larentis,et al.  Carrier distribution and negative compressibility in graphene-MoS$_{2}$ heterostructures , 2014 .

[22]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[23]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[24]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[25]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[26]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature nanotechnology.

[27]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[28]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[29]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[30]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[31]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[32]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[33]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[34]  Xinran Wang,et al.  Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances , 2012 .

[35]  Z. Zhong,et al.  A fully tunable single-walled carbon nanotube diode. , 2010, Nano letters.

[36]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[37]  Paul L. McEuen,et al.  Transport in carbon nanotube p-i-n diodes , 2006 .

[38]  J. U. Lee,et al.  Carbon nanotube p-n junction diodes , 2004 .