Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model

This paper considers the kinetics of isothermal primary recrystallization of metallic materials using a two-dimensional cellular automata model. The model was applied to predictions of recrystallization kinetics and mean grain size dependence on initial grain topology. It was observed that more deformed microstructure accelerates the kinetics of recrystallization, increases the Avrami exponent and influences the final mean grain size. The results of simulations were compared with predictions of JMAK theory for two-dimensional growth.

[1]  H. W. Hesselbarth,et al.  Simulation of recrystallization by cellular automata , 1991 .

[2]  Jirí Kroc,et al.  Application of Cellular Automata Simulations to Modeling of Dynamic Recrystallization , 2002, International Conference on Computational Science.

[3]  R. L. Goetz,et al.  Particle stimulated nucleation during dynamic recrystallization using a cellular automata model , 2005 .

[4]  G. Gottstein,et al.  Simulation of primary recrystallization using a modified three-dimensional cellular automaton , 1999 .

[5]  C. M. Sellars,et al.  The influence of transient deformation conditions on recrystallization during thermomechanical processing of an Al-1% Mg alloy , 1999 .

[6]  Dierk Raabe,et al.  Cellular Automata in Materials Science with Particular Reference to Recrystallization Simulation , 2002 .

[7]  A. Rollett Overview of modeling and simulation of recrystallization , 1997 .

[8]  C. Davies Growth of nuclei in a cellular automaton simulation of recrystallisation , 1997 .

[9]  R. Turk,et al.  Modeling the dynamic recrystallization under multi-stage hot deformation , 2004 .

[10]  Dierk Raabe,et al.  Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena , 1999 .

[11]  John W. Cahn,et al.  The kinetics of grain boundary nucleated reactions , 1956 .

[12]  Nirupam Chakraborti,et al.  Simulating recrystallization through cellular automata and genetic algorithms , 2005 .

[13]  Tommaso Toffoli,et al.  Cellular Automata Machines , 1987, Complex Syst..

[14]  V. Seetharaman,et al.  Modeling dynamic recrystallization using cellular automata , 1998 .

[15]  Jörg R. Weimar,et al.  Simulation with Cellular Automata , 2003 .

[16]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[17]  C. Davies The effect of neighbourhood on the kinetics of a cellular automaton recrystallisation model , 1995 .

[18]  Dierk Raabe,et al.  Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium , 2000 .

[19]  Z. Guo,et al.  Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization , 2001 .

[20]  M. Ashby,et al.  Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics , 1982 .

[21]  V. Seetharaman,et al.  Static recrystallization kinetics with homogeneous and heterogeneous nucleation using a cellular automata model , 1998 .

[22]  T. Sheppard Extrusion of Aluminium Alloys , 1999 .

[23]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .