HeT-A and TART, two Drosophila retrotransposons with a bona fide role in chromosome structure for more than 60 million years

Drosophila telomeres have been maintained by retrotransposition for at least 60 MY, which predates the separation of extant species of this genus. Studies of D. melanogaster, D. yakuba, and D. virilis show that, in Drosophila, telomeres are composed of two non-LTR retrotransposons, HeT-A and TART. Far from being static, HeT-A and TART evolve faster than Drosophila euchromatic genes. In spite of their high rate of sequence change, HeT-A and TART maintain their basic structures and unusual individual features. The maintenance of their separate identities suggests that HeT-A and TART cooperate either in the process of retrotransposition onto the chromosome end, or in the formation of telomere chromatin by transposed DNA copies. The telomeric retrotransposons and the Drosophila genome constitute an example of a robust symbiotic relationship between mobile elements and the genome.

[1]  F. Marec,et al.  TTAGG Telomeric Repeats in Chromosomes of Some Insects and Other Arthropods , 2004, Chromosome Research.

[2]  M. Pardue,et al.  Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. , 2003, Annual review of genetics.

[3]  M. Pardue,et al.  HeT-A elements in Drosophila virilis: Retrotransposon telomeres are conserved across the Drosophila genus , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Athanasiadis,et al.  Intracellular Targeting of Gag Proteins of the Drosophila Telomeric Retrotransposons , 2003, Journal of Virology.

[5]  M. Pardue,et al.  Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Pardue,et al.  The promoter of the heterochromatic Drosophila telomeric retrotransposon, HeT-A, is active when moved into euchromatic locations. , 2003, Genetics.

[7]  E. Galun Telomeres and Transposable Elements , 2003 .

[8]  M. Pardue,et al.  Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends , 2002, The Journal of cell biology.

[9]  P. Georgiev,et al.  Enhancer of terminal gene conversion, a new mutation in Drosophila melanogaster that induces telomere elongation by gene conversion. , 2002, Genetics.

[10]  M. Pardue,et al.  Coevolution of the telomeric retrotransposons across Drosophila species. , 2002, Genetics.

[11]  M. Pardue,et al.  Element-specific localization of Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. M. Mason,et al.  Telomere elongation (Tel), a new mutation in Drosophila melanogaster that produces long telomeres. , 2002, Genetics.

[13]  H. Morrison,et al.  Three retrotransposon families in the genome of Giardia lamblia: Two telomeric, one dead , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Y. Kubo,et al.  Structural and phylogenetic analysis of TRAS, telomeric repeat-specific non-LTR retrotransposon families in Lepidopteran insects. , 2001, Molecular biology and evolution.

[15]  E. Blackburn,et al.  Telomeres and their control. , 2000, Annual review of genetics.

[16]  T. Eickbush,et al.  The age and evolution of non-LTR retrotransposable elements. , 1999, Molecular biology and evolution.

[17]  M. Pardue,et al.  The Two Drosophila Telomeric Transposable Elements Have Very Different Patterns of Transcription , 1999, Molecular and Cellular Biology.

[18]  K. Lowenhaupt,et al.  Conserved subfamilies of the Drosophila HeT-A telomere-specific retrotransposon. , 1998, Genetics.

[19]  Takashi Yamada,et al.  Zepp, a LINE‐like retrotransposon accumulated in the Chlorella telomeric region , 1997, The EMBO journal.

[20]  T R Hughes,et al.  Reverse transcriptase motifs in the catalytic subunit of telomerase. , 1997, Science.

[21]  H. Fujiwara,et al.  A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori. , 1997, Nucleic acids research.

[22]  I. Arkhipova,et al.  Promoting in Tandem: The Promoter for Telomere Transposon HeT-A and Implications for the Evolution of Retroviral LTRs , 1997, Cell.

[23]  T. Lendvay,et al.  Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. , 1996, Genetics.

[24]  H. Fujiwara,et al.  Structural analysis of TRAS1, a novel family of telomeric repeat-associated retrotransposons in the silkworm, Bombyx mori , 1995, Molecular and cellular biology.

[25]  W. Lathe,et al.  R1 and R2 retrotransposable elements of Drosophila evolve at rates similar to those of nuclear genes. , 1995, Genetics.

[26]  J T Finch,et al.  Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Dingermann,et al.  Internally located and oppositely oriented polymerase II promoters direct convergent transcription of a LINE-like retroelement, the Dictyostelium repetitive element, from Dictyostelium discoideum , 1994, Molecular and cellular biology.

[28]  H. Akashi Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. , 1994, Genetics.

[29]  T. Eickbush,et al.  Sequence relationship of retrotransposable elements R1 and R2 within and between divergent insect species. , 1993, Molecular biology and evolution.

[30]  J. Rochaix,et al.  A transposon with an unusual arrangement of long terminal repeats in the green alga Chlamydomonas reinhardtii. , 1988, The EMBO journal.

[31]  M. A. McClure,et al.  Sequence comparisons of retroviral proteins: relative rates of change and general phylogeny. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[32]  H. Muller,et al.  Concerning the Healing of Chromosome Ends Produced by Breakage in Drosophila melanogaster , 1954, The American Naturalist.

[33]  B. Mcclintock,et al.  The Fusion of Broken Ends of Chromosomes Following Nuclear Fusion. , 1942, Proceedings of the National Academy of Sciences of the United States of America.