Triacylglycerols in prokaryotic microorganisms

[1]  J. Guinea,et al.  Cellular lipid accumulation by Pseudomonas aeruginosa 44T1 , 1991, Applied Microbiology and Biotechnology.

[2]  A. Steinbüchel,et al.  Excretion of pyruvate by mutants of Alcaligenes eutrophus, which are impaired in the accumulation of poly(β-hydroxybutyric acid) (PHB), under conditions permitting synthesis of PHB , 1989, Applied Microbiology and Biotechnology.

[3]  R. S. Kennedy,et al.  Microbial assimilation of hydrocarbons , 2004, Archives of Microbiology.

[4]  H. Alvarez Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria , 2003 .

[5]  A. Steinbüchel,et al.  Identification of phenyldecanoic acid as a constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630. , 2002, Microbiology.

[6]  A. Steinbüchel,et al.  Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins , 2001, Archives of Microbiology.

[7]  D. Murphy The biogenesis and functions of lipid bodies in animals, plants and microorganisms. , 2001, Progress in lipid research.

[8]  T. Foglia,et al.  Production of polyhydroxyalkanoates from intact triacylglycerols by genetically engineered Pseudomonas , 2001, Applied Microbiology and Biotechnology.

[9]  O. Pucci,et al.  Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. , 2001, FEMS microbiology letters.

[10]  A. Steinbüchel,et al.  In vitro effects of sterculic acid on lipid biosynthesis in Rhodococcus opacus strain PD630 and isolation of mutants defective in fatty acid desaturation. , 2000, FEMS microbiology letters.

[11]  A. Steinbüchel,et al.  Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126 , 2000, Applied Microbiology and Biotechnology.

[12]  S. Stymne,et al.  Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Steinbüchel,et al.  Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids) , 1999, Applied Microbiology and Biotechnology.

[14]  T. Foglia,et al.  Medium-Chain-Length Poly(β-Hydroxyalkanoate) Synthesis from Triacylglycerols by Pseudomonas saccharophila , 1999, Current Microbiology.

[15]  Steinbuchel,et al.  Biosynthesis of polyhydroxyalkanoates from low-rank coal liquefaction products by Pseudomonas oleovorans and Rhodococcus ruber , 1999, Applied microbiology and biotechnology.

[16]  Robert V Farese,et al.  Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. Somerville,et al.  Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase , 1997, Journal of bacteriology.

[18]  A. Steinbüchel,et al.  Lipid storage compounds in marine bacteria , 1997, Applied Microbiology and Biotechnology.

[19]  M. M. Chakrabarty,et al.  THE BIOTECHNOLOGY OF OILS AND FATS , 1997 .

[20]  A. Steinbüchel,et al.  Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol , 1997 .

[21]  J. Leman,et al.  Oleaginous microorganisms: an assessment of the potential. , 1997, Advances in applied microbiology.

[22]  A. Steinbüchel,et al.  Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630 , 1996, Archives of Microbiology.

[23]  R. Lehner,et al.  Biosynthesis of triacylglycerols. , 1996, Progress in lipid research.

[24]  H. Valentin,et al.  Metabolic pathway for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) formation in Nocardia corallina: inactivation of mutB by chromosomal integration of a kanamycin resistance gene , 1996, Applied and environmental microbiology.

[25]  P. Shewry,et al.  Purification and characterisation of oil body proteins (oleosins) from seeds of sunflower ( Helianthus annuus , 1996 .

[26]  V. Tyler,et al.  Pharmacognosy and Pharmacobiotechnology , 1996 .

[27]  A. Anderson,et al.  Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Rhodococcus ruber , 1995 .

[28]  C. Föllner,et al.  Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. , 1995, Canadian journal of microbiology.

[29]  S. Encarnación,et al.  Fermentative and aerobic metabolism in Rhizobium etli. , 1995, Journal of bacteriology.

[30]  A. Steinbüchel,et al.  Diversity of bacterial polyhydroxyalkanoic acids , 1995 .

[31]  N. M. Packter,et al.  Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. , 1994, Microbiology.

[32]  C. A. Fewson,et al.  Biotransformations catalyzed by the genus Rhodococcus. , 1994, Critical reviews in biotechnology.

[33]  M. Potts,et al.  Rehydration induces rapid onset of lipid biosynthesis in desiccated Nostoc commune (Cyanobacteria). , 1993, Biochimica et biophysica acta.

[34]  D. Murphy,et al.  Structure, function and biogenesis of storage lipid bodies and oleosins in plants. , 1993, Progress in lipid research.

[35]  S. Radwan,et al.  Lipids of n-Alkane-Utilizing Microorganisms and Their Application Potential , 1993 .

[36]  C. Ratledge Microbial Lipids: Commercial Realities or Academic Curiosities , 1992 .

[37]  W. Finnerty The biology and genetics of the genus Rhodococcus. , 1992, Annual review of microbiology.

[38]  G. W. Haywood,et al.  Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. , 1991, International journal of biological macromolecules.

[39]  C. Ratledge Microorganisms for lipids , 1991 .

[40]  A. Anderson,et al.  Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. , 1990, Microbiological reviews.

[41]  D. Murphy Storage lipid bodies in plants and other organisms. , 1990, Progress in lipid research.

[42]  J. Mccormack,et al.  Structure, Distribution and Function of Wax Esters in Acinetobacter calcoaceticus , 1986 .

[43]  Y. Takahara,et al.  Microbial Oxidation of Isoprenoid Alkanes, Phytane, Norpristane and Farnesane , 1985 .

[44]  M. Singer,et al.  Growth of Acinetobacter sp. strain HO1-N on n-hexadecanol: physiological and ultrastructural characteristics , 1985, Journal of bacteriology.

[45]  A. Steinbüchel,et al.  Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions , 1984, Journal of bacteriology.

[46]  C. Breuil,et al.  Cellular and extracellular lipids of Acinetobacter lwoffi during growth on hexadecane , 1982 .

[47]  E. Juni Genetics and physiology of Acinetobacter. , 1978, Annual review of microbiology.

[48]  T. Kusaka,et al.  Solubilization of diglyceride acyltransferase from the membrane of Mycobacterium smegmatis. , 1976, Journal of biochemistry.

[49]  W. Finnerty,et al.  Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N , 1976, Journal of bacteriology.

[50]  W. Finnerty,et al.  Comparative analysis of the lipids of Acinetobacter species grown on hexadecane , 1975, Journal of bacteriology.

[51]  J. Lucy,et al.  Lipids and membranes , 1974, FEBS letters.