Efficient Hierarchical Parallel Genetic Algorithms using Grid computing

In this paper, we present an efficient Hierarchical Parallel Genetic Algorithm framework using Grid computing (GE-HPGA). The framework is developed using standard Grid technologies, and has two distinctive features: (1) an extended GridRPC API to conceal the high complexity of the Grid environment, and (2) a metascheduler for seamless resource discovery and selection. To assess the practicality of the framework, a theoretical analysis of the possible speed-up offered is presented. An empirical study on GE-HPGA using a benchmark problem and a realistic aerodynamic airfoil shape optimization problem for diverse Grid environments having different communication protocols, cluster sizes, processing nodes, at geographically disparate locations also indicates that the proposed GE-HPGA using Grid computing offers a credible framework for providing a significant speed-up to evolutionary design optimization in science and engineering.

[1]  Bin Yu,et al.  PGGA: A predictable and grouped genetic algorithm for job scheduling , 2006, Future Gener. Comput. Syst..

[2]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .

[3]  Dalila Megherbi,et al.  Implementation of a parallel Genetic Algorithm on a cluster of workstations: Traveling Salesman Problem, a case study , 2001, Future Gener. Comput. Syst..

[4]  Yew-Soon Ong,et al.  A domain knowledge based search advisor for design problem solving environments , 2002 .

[5]  Simon J. Cox,et al.  Numerical Optimisation as Grid Services for Engineering Design , 2004, Journal of Grid Computing.

[6]  John G. Gammack,et al.  Searching databases using parallel genetic algorithms on a transputer computing surface , 1993, Future Gener. Comput. Syst..

[7]  Zheng Niu,et al.  Evolving neural network using real coded genetic algorithm (GA) for multispectral image classification , 2004, Future Gener. Comput. Syst..

[8]  David Abramson,et al.  A Computational Economy for Grid Computing and its Implementation in the Nimrod-G Resource Brok , 2001, Future Gener. Comput. Syst..

[9]  Yang Gao,et al.  Adaptive grid job scheduling with genetic algorithms , 2005, Future Gener. Comput. Syst..

[10]  I. C. Parmee Adaptive Computing in Design and Manufacture , 1998 .

[11]  Henri Casanova,et al.  Overview of GridRPC: A Remote Procedure Call API for Grid Computing , 2002, GRID.

[12]  Enrique Alba,et al.  Heterogeneous Computing and Parallel Genetic Algorithms , 2002, J. Parallel Distributed Comput..

[13]  Jong Woo Kim,et al.  Computerized recognition of Alzheimer disease-EEG using genetic algorithms and neural network , 2005, Future Gener. Comput. Syst..

[14]  Enrique Alba,et al.  Analyzing synchronous and asynchronous parallel distributed genetic algorithms , 2001, Future Gener. Comput. Syst..

[15]  Elias N. Houstis,et al.  Complex problem-solving environments for Grid computing , 2005, Future Gener. Comput. Syst..

[16]  Ami Marowka,et al.  The GRID: Blueprint for a New Computing Infrastructure , 2000, Parallel Distributed Comput. Pract..

[17]  Jack Dongarra,et al.  NetSolve: Past, Present, and Future - A Look at a Grid Enabled Server , 2003 .

[18]  Nowostawski,et al.  [IEEE 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. KES\'99 - Adelaide, SA, Australia (31 Aug.-1 Sept. 1999)] 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410) - Par , 1999 .

[19]  G. Amdhal,et al.  Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).

[20]  Riccardo Poli,et al.  Parallel genetic algorithm taxonomy , 1999, 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410).

[21]  Rajkumar Buyya,et al.  The Grid: International Efforts in Global Computing , 2000 .

[22]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[23]  Y. Rahmat-Samii,et al.  A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design , 2004, IEEE Transactions on Antennas and Propagation.

[24]  Barry Wilkinson,et al.  Parallel programming , 1998 .

[25]  Ian T. Foster The globus toolkit for grid computing , 2001, Proceedings First IEEE/ACM International Symposium on Cluster Computing and the Grid.

[26]  David E. Culler,et al.  The ganglia distributed monitoring system: design, implementation, and experience , 2004, Parallel Comput..

[27]  Bernhard Sendhoff,et al.  Optimisation of a Stator Blade Used in a Transonic Compressor Cascade with Evolution Strategies , 2000 .

[28]  Ian T. Foster,et al.  Condor-G: A Computation Management Agent for Multi-Institutional Grids , 2004, Cluster Computing.

[29]  David Abramson,et al.  A PARALLEL GENETIC ALGORITHM FOR SOLVING THE SCHOOL TIMETABLING PROBLEM , 1992 .

[30]  Ian Foster,et al.  The Grid 2 - Blueprint for a New Computing Infrastructure, Second Edition , 1998, The Grid 2, 2nd Edition.

[31]  Michael J. Quinn,et al.  Parallel programming in C with MPI and OpenMP , 2003 .

[32]  Anthony S. Wojcik,et al.  Afips Conference Proceedings , 1985 .

[33]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[34]  A. Keane,et al.  Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .

[35]  Wenjun Zhuang,et al.  Implementation of a parallel genetic algorithm for floorplan optimization on IBM SP2 , 1997, Proceedings High Performance Computing on the Information Superhighway. HPC Asia '97.

[36]  Alexandru Iosup,et al.  GRENCHMARK: A Framework for Analyzing, Testing, and Comparing Grids , 2006, Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06).

[37]  Wentong Cai,et al.  Design and implementation of an efficient multi-cluster GridRPC system , 2005, CCGrid 2005. IEEE International Symposium on Cluster Computing and the Grid, 2005..