Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish.

[1]  B. Paw,et al.  The pu.1 promoter drives myeloid gene expression in zebrafish. , 2004, Blood.

[2]  J. Postlethwait,et al.  Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency , 2003, Nature Genetics.

[3]  A. Brownlie,et al.  Characterization of embryonic globin genes of the zebrafish. , 2003, Developmental biology.

[4]  A. Ribera,et al.  Immunocytochemistry as a tool for zebrafish developmental neurobiology. , 2003, Methods in cell science : an official journal of the Society for In Vitro Biology.

[5]  L. Zon,et al.  Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. , 2002, Experimental hematology.

[6]  H. Soreq,et al.  Transcriptional regulation of erythropoiesis. Fine tuning of combinatorial multi-domain elements. , 2002, European journal of biochemistry.

[7]  R. Ho,et al.  Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning. , 2002, Developmental biology.

[8]  S. Orkin,et al.  Transcriptional regulation of erythropoiesis: an affair involving multiple partners , 2002, Oncogene.

[9]  B. Weinstein,et al.  A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Kathryn E. Crosier,et al.  Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. , 2002, Development.

[11]  F. Liu,et al.  Cloning and expression pattern of the lysozyme C gene in zebrafish , 2002, Mechanisms of Development.

[12]  L. Zon,et al.  Molecular cloning, genetic mapping, and expression analysis of four zebrafish c/ebp genes. , 2001, Gene.

[13]  A. Oates,et al.  Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. , 2001, Blood.

[14]  B. Paw,et al.  Myelopoiesis in the zebrafish, Danio rerio. , 2001, Blood.

[15]  A. Look,et al.  Zebrafish myelopoiesis and blood cell development , 2001, Current opinion in hematology.

[16]  Makoto Kobayashi,et al.  Hematopoietic regulatory domain of gata1 gene is positively regulated by GATA1 protein in zebrafish embryos. , 2001, Development.

[17]  Y. Yan,et al.  Hhex and scl function in parallel to regulate early endothelial and blood differentiation in zebrafish. , 2000, Development.

[18]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[19]  I. Weissman,et al.  A clonogenic common myeloid progenitor that gives rise to all myeloid lineages , 2000, Nature.

[20]  B. Thisse,et al.  Ontogeny and behaviour of early macrophages in the zebrafish embryo. , 1999, Development.

[21]  F. Pio,et al.  Neutrophils deficient in PU.1 do not terminally differentiate or become functionally competent. , 1998, Blood.

[22]  T. Graf,et al.  PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. , 1998, Genes & development.

[23]  B. Göttgens,et al.  The SCL gene specifies haemangioblast development from early mesoderm , 1998, The EMBO journal.

[24]  A. Amores,et al.  The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. , 1998, Developmental biology.

[25]  J. Postlethwait,et al.  SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. , 1998, Genes & development.

[26]  M. Farrell,et al.  GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. , 1997, Development.

[27]  S. Orkin,et al.  A lineage‐selective knockout establishes the critical role of transcription factor GATA‐1 in megakaryocyte growth and platelet development , 1997, The EMBO journal.

[28]  D. Stainier,et al.  The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. , 1997, Development.

[29]  M. Fishman,et al.  Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. , 1996, Development.

[30]  M. Zernicka-Goetz,et al.  An indelible lineage marker for Xenopus using a mutated green fluorescent protein. , 1996, Development.

[31]  A. Feeney,et al.  Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. , 1996, The EMBO journal.

[32]  D. Ransom,et al.  Intraembryonic hematopoietic cell migration during vertebrate development. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Tenen,et al.  PU.1 (Spi-1) autoregulates its expression in myeloid cells. , 1995, Oncogene.

[34]  L. Zon,et al.  Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. , 1995, Development.

[35]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[36]  T. Graf,et al.  GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. , 1995, Genes & development.

[37]  M. Fishman,et al.  Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. , 1994, Development.

[38]  S. Orkin,et al.  Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1 , 1991, Nature.

[39]  R. Ho,et al.  Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors , 1990, Nature.

[40]  C. Kimmel,et al.  Origin and organization of the zebrafish fate map. , 1990, Development.