Nonlocal Anisotropic Discrete Regularization for Image, Data Filtering and Clustering

In this paper, we propose a nonlocal anisotropic discrete regularization on graphs of arbitrary topologies as a framework for image, data filtering and clustering. Inspired by recent works on nonlocal regularization and on the TV digital filter, a family of discrete anisotropic functional regularization on graphs is proposed. This regularization is based on the Lp-norm of the nonlocal gradient and the discrete p-Laplacian on graphs. It can be viewed as the discrete analogue on graphs of the continuous pTV anisotropic functionals regularization formulations. After providing definitions and algorithms to resolve such a discrete nonlocal anisotropic regularization, we show its properties for filtering, clustering on di! erent types of data living on di! erent graph topologies (image, data). In particular we investigate the cases of p = 2, p = 1 and p < 1, this latter being very few considered in literature.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[4]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[5]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[6]  Peter W. Bates,et al.  A Discrete Convolution Model¶for Phase Transitions , 1999 .

[7]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[8]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[9]  Tony F. Chan,et al.  The digital TV filter and nonlinear denoising , 2001, IEEE Trans. Image Process..

[10]  P. McDonald,et al.  Diffusions on graphs, Poisson problems and spectral geometry , 2002, math/0205097.

[11]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[12]  B. Schölkopf,et al.  A Regularization Framework for Learning from Graph Data , 2004, ICML 2004.

[13]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[14]  Laurent D. Cohen,et al.  Energy Partitions and Image Segmentation , 2004, Journal of Mathematical Imaging and Vision.

[15]  Jérôme Darbon,et al.  Exact Optimization of Discrete Constrained Total Variation Minimization Problems , 2004, IWCIA.

[16]  Bernhard Schölkopf,et al.  Regularization on Discrete Spaces , 2005, DAGM-Symposium.

[17]  Thierry Viéville,et al.  An unbiased implementation of regularization mechanisms , 2005, Image Vis. Comput..

[18]  A. Bensoussan,et al.  Difference equations on weighted graphs , 2005 .

[19]  Stanley Osher,et al.  Deblurring and Denoising of Images by Nonlocal Functionals , 2005, Multiscale Model. Simul..

[20]  Abderrahim Elmoataz,et al.  Image Smoothing and Segmentation by Graph Regularization , 2005, ISVC.

[21]  S. Osher,et al.  Total variation and level set methods in image science , 2005, Acta Numerica.

[22]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[23]  Tony F. Chan,et al.  Image processing and analysis , 2005 .

[24]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[25]  Discrete Regularization , 2006, Semi-Supervised Learning.

[26]  G. Aubert,et al.  Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (Applied Mathematical Sciences) , 2006 .

[27]  David Tschumperlé,et al.  Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE's , 2006, International Journal of Computer Vision.

[28]  J. Morel,et al.  Non local demosaicing , 2007 .

[29]  Abderrahim Elmoataz,et al.  Discrete Regularization on Weighted Graphs for Image and Mesh Filtering , 2007, SSVM.

[30]  Guy Gilboa,et al.  Nonlocal Linear Image Regularization and Supervised Segmentation , 2007, Multiscale Model. Simul..

[31]  J. Rossi,et al.  Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models , 2007 .

[32]  Pierrick Coupé,et al.  Bayesian Non-local Means Filter, Image Redundancy and Adaptive Dictionaries for Noise Removal , 2007, SSVM.

[33]  Leo Grady,et al.  A Seeded Image Segmentation Framework Unifying Graph Cuts And Random Walker Which Yields A New Algorithm , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[34]  G. Peyré Image Processing with Non-local Spectral Bases , 2008 .

[35]  Abderrahim Elmoataz,et al.  Nonlocal Discrete Regularization on Weighted Graphs: A Framework for Image and Manifold Processing , 2008, IEEE Transactions on Image Processing.

[36]  Gabriel Peyré,et al.  Image Processing with Nonlocal Spectral Bases , 2008, Multiscale Model. Simul..

[37]  J. M. Mazón,et al.  A nonlocal p-Laplacian evolution equation with Neumann boundary conditions , 2008 .

[38]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..