Validation of HTS optical turbulence profiling via sonic anemometry

Previous turbulence measurements along a near-ground, 500 m, horizontal path using two helium-neon laser beacons and a Hartmann Turbulence Sensor (HTS) yielded profiles of Cn^2 by measuring local aberrated wavefront tilts. The profiles were consistent with Cn^2 values collected along the same path by a BLS900 scintillometer. Further validation of the HTS profiling method is necessary to produce accurate optical turbulence profiles for wavefront correction. To add confidence to the HTS dual-beacon profiling method, four sonic anemometers were added along the path to indirectly measure values of Cn^2. Comparison of the independently measured data sets helps legitimize the HTS turbulence profiling method. Propagation over an equal parts grass and concrete path ensured the turbulence profile is more varied. Cn^2 profiles in this work derived from HTS data captured on 25 and 26 July 2019 agreed strongly with the collocated anemometer and BLS measurements.

[1]  J Shamir,et al.  Improved compensation of atmospheric turbulence effects by multiple adaptive mirror systems. , 1993, Applied optics.

[2]  David L. Fried,et al.  Differential angle of arrival: Theory, evaluation, and measurement feasibility , 1975 .

[3]  Evgeni Fedorovich,et al.  Retrieval of structure functions of air temperature and refractive index from large eddy simulations of the atmospheric boundary layer , 2013, Optics & Photonics - Optical Engineering + Applications.

[4]  B. Welsh,et al.  Imaging Through Turbulence , 1996 .

[5]  Steven T. Fiorino,et al.  Estimation of Fried's Coherence Diameter from Differential Motion of Features in Time-lapse Imagery , 2019, 2019 IEEE Aerospace Conference.

[6]  Steven T. Fiorino,et al.  Analysis of Turbulence Anisotropy with a Hartmann Sensor , 2017 .

[7]  I A Botygin,et al.  Methods and algorithms for statistical processing of instantaneous meteorological parameters from ultrasonic measurements , 2016 .

[8]  J. Beckers ADAPTIVE OPTICS FOR ASTRONOMY: Principles, Performance, and Applications , 1993 .

[9]  Christopher A. Rice,et al.  Profiling of atmospheric turbulence along a path using two beacons and a Hartmann turbulence sensor , 2018, Optical Engineering + Applications.

[10]  Mark Chun,et al.  Optical Turbulence Profiles at Mauna Kea Measured by MASS and SCIDAR , 2005 .

[11]  Simon Foster,et al.  Optics , 1981, Arch. Formal Proofs.

[12]  Robert K. Tyson Introduction to Adaptive Optics , 2000 .

[13]  Christopher A. Rice,et al.  Estimation of atmospheric turbulence using differential motion of extended features in time-lapse imagery , 2018 .

[14]  Darryl P. Greenwood,et al.  Bandwidth specification for adaptive optics systems , 1977 .

[15]  Richard W. Wilson,et al.  SLODAR: measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor , 2002 .

[16]  David L. Fried,et al.  Varieties Of Isoplanatism , 1976, Other Conferences.

[17]  Richard W. Wilson,et al.  Determination of the profile of atmospheric optical turbulence strength from SLODAR data , 2006 .

[18]  K. Winick,et al.  Stellar scintillation technique for the measurement of tilt anisoplanatism , 1988 .

[19]  L M Mugnier,et al.  Optimal wave-front reconstruction strategies for multiconjugate adaptive optics. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  M. Sarazin,et al.  The ESO differential image motion monitor , 1990 .

[21]  F. Roddier V The Effects of Atmospheric Turbulence in Optical Astronomy , 1981 .

[22]  Steven T. Fiorino,et al.  Measurements of anisotropy in optical turbulence , 2017, 2017 IEEE Aerospace Conference.

[23]  L. Andrews,et al.  Laser Beam Propagation Through Random Media , 1998 .

[24]  J. Vernin,et al.  Whole atmospheric-turbulence profiling with generalized scidar. , 1997, Applied optics.

[25]  F. Smith,et al.  Atmospheric propagation of radiation , 1993 .

[26]  Detlev Sprung,et al.  Investigation of optical turbulence in the atmospheric surface layer using scintillometer measurements along a slant path and comparison to ultrasonic anemometer measurements , 2014, Remote Sensing.

[27]  Byron M. Welsh,et al.  Analysis of Multiconjugate Adaptive Optics , 1992, Adaptive Optics for Large Telescopes.

[28]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[29]  L. Richardson,et al.  Atmospheric Diffusion Shown on a Distance-Neighbour Graph , 1926 .

[30]  Szymon Gladysz,et al.  Ultimate turbulence experiment: simultaneous measurements of Cn2 near the ground using six devices and eight methods , 2015, SPIE Remote Sensing.

[31]  R. Kraichnan On Kolmogorov's inertial-range theories , 1974, Journal of Fluid Mechanics.

[32]  D. L. Fried,et al.  Optical heterodyne detection of an atmospherically distorted signal wave front , 1967 .

[33]  M. Vorontsov,et al.  The principles of adaptive optics , 1985 .

[34]  Luc R. Bissonnette,et al.  Propagation and Imaging through the Atmosphere III , 2000 .

[35]  Alex Mahalov,et al.  Long-range propagation through inhomogeneous turbulent atmosphere: analysis beyond phase screens , 2019, Physica Scripta.

[36]  A. Lambert,et al.  Improved detection of atmospheric turbulence with SLODAR. , 2007, Optics express.