A Graph Framework for Manifold-Valued Data

Graph-based methods have been proposed as a unified framework for discrete calculus of local and nonlocal image processing methods in recent years. In order to translate variational models and partial differential equations to a graph, certain operators have been investigated and successfully applied to real-world applications involving graph models. So far the graph framework has been limited to real- and vector-valued functions on Euclidean domains. In this paper we generalize this model to the case of manifold-valued data. We introduce the basic calculus needed to formulate variational models and partial differential equations for manifold-valued functions and discuss the proposed graph framework for two particular families of operators, namely, the isotropic and anisotropic graph $p$-Laplacian operators, $p\geq1$. Based on the choice of $p$ we are in particular able to solve optimization problems on manifold-valued functions involving total variation ($p=1$) and Tikhonov ($p=2$) regularization. Finall...

[1]  Daniel Cremers,et al.  Total Variation Regularization for Functions with Values in a Manifold , 2013, 2013 IEEE International Conference on Computer Vision.

[2]  A. Bertozzi,et al.  Γ-CONVERGENCE OF GRAPH GINZBURG–LANDAU FUNCTIONALS , 2012 .

[3]  Mila Nikolova,et al.  A Nonlocal Denoising Algorithm for Manifold-Valued Images Using Second Order Statistics , 2016, SIAM J. Imaging Sci..

[4]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[5]  Ronny Bergmann,et al.  A Second-Order TV-Type Approach for Inpainting and Denoising Higher Dimensional Combined Cyclic and Vector Space Data , 2015, Journal of Mathematical Imaging and Vision.

[6]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[7]  Fabio Rocca,et al.  Possibilities and limits of SAR interferometry , 1997 .

[8]  Soon-Yeong Chung,et al.  Extinction and positivity of solutions of the p-Laplacian evolution equation on networks , 2012 .

[9]  Abderrahim Elmoataz,et al.  Non-local Discrete ∞-Poisson and Hamilton Jacobi Equations - From Stochastic Game to Generalized Distances on Images, Meshes, and Point Clouds , 2016, J. Math. Imaging Vis..

[10]  Yu Wang,et al.  Fast Regularization of Matrix-Valued Images , 2012, Efficient Algorithms for Global Optimization Methods in Computer Vision.

[11]  Xavier Bresson,et al.  Consistency of Cheeger and Ratio Graph Cuts , 2014, J. Mach. Learn. Res..

[12]  Dean B. Gesch,et al.  The National Map - Elevation , 2009 .

[13]  Gabriele Steidl,et al.  Second Order Differences of Cyclic Data and Applications in Variational Denoising , 2014, SIAM J. Imaging Sci..

[14]  Andreas Weinmann,et al.  Total Variation Regularization for Manifold-Valued Data , 2013, SIAM J. Imaging Sci..

[15]  Abderrahim Elmoataz,et al.  On the p-Laplacian and ∞-Laplacian on Graphs with Applications in Image and Data Processing , 2015, SIAM J. Imaging Sci..

[16]  A. Bertozzi,et al.  $\Gamma$-convergence of graph Ginzburg-Landau functionals , 2012, Advances in Differential Equations.

[17]  Juan Ferrera,et al.  Proximal Calculus on Riemannian Manifolds , 2005 .

[18]  Abderrahim Elmoataz,et al.  Partial Difference Operators on Weighted Graphs for Image Processing on Surfaces and Point Clouds , 2014, IEEE Transactions on Image Processing.

[19]  Mikhail Belkin,et al.  Semi-supervised Learning by Higher Order Regularization , 2011, AISTATS.

[20]  A. Mondino ON RIEMANNIAN MANIFOLDS , 1999 .

[21]  A. Bertozzi,et al.  Mean Curvature, Threshold Dynamics, and Phase Field Theory on Finite Graphs , 2013, 1307.0045.

[22]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[23]  Gabriele Steidl,et al.  Supervised and transductive multi-class segmentation using p-Laplacians and RKHS methods , 2014, J. Vis. Commun. Image Represent..

[24]  S. Osher,et al.  Convergence rates of convex variational regularization , 2004 .

[25]  C. Udriste,et al.  Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .

[26]  Xiaoyi Jiang,et al.  A Variational Framework for Region-Based Segmentation Incorporating Physical Noise Models , 2013, Journal of Mathematical Imaging and Vision.

[27]  Ronny Bergmann,et al.  Inpainting of Cyclic Data Using First and Second Order Differences , 2014, EMMCVPR.

[28]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[29]  Elias Wegert,et al.  Inferential statistics of electron backscatter diffraction data from within individual crystalline grains , 2010 .

[30]  Ron Kimmel,et al.  Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..

[31]  Leo Grady,et al.  Discrete Calculus - Applied Analysis on Graphs for Computational Science , 2010 .

[32]  R. Chan,et al.  Restoration of Manifold-Valued Images by Half-Quadratic Minimization , 2015, 1505.07029.

[33]  K. Kunze,et al.  Orientation imaging: The emergence of a new microscopy , 1993 .

[34]  Abderrahim Elmoataz,et al.  Nonlinear Multilayered Representation of Graph-Signals , 2013, Journal of Mathematical Imaging and Vision.

[35]  Florence Tupin,et al.  NL-InSAR: Nonlocal Interferogram Estimation , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Matthias Hein,et al.  Spectral clustering based on the graph p-Laplacian , 2009, ICML '09.

[37]  Nicolas Papadakis,et al.  Fundamentals of Non-Local Total Variation Spectral Theory , 2015, SSVM.

[38]  Y. Wong,et al.  Differentiable Manifolds , 2009 .

[39]  Mikhail Belkin,et al.  Consistency of spectral clustering , 2008, 0804.0678.

[40]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[41]  Abderrahim Elmoataz,et al.  Non-local Discrete $$\infty $$∞-Poisson and Hamilton Jacobi Equations , 2015, Journal of Mathematical Imaging and Vision.

[42]  Gabriele Steidl,et al.  Priors with Coupled First and Second Order Differences for Manifold-Valued Image Processing , 2017, Journal of Mathematical Imaging and Vision.

[43]  Delio Mugnolo Semigroup Methods for Evolution Equations on Networks , 2014 .

[44]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[45]  Carola-Bibiane Schönlieb,et al.  Graph Clustering, Variational Image Segmentation Methods and Hough Transform Scale Detection for Object Measurement in Images , 2016, Journal of Mathematical Imaging and Vision.

[46]  P. Thomas Fletcher,et al.  Riemannian geometry for the statistical analysis of diffusion tensor data , 2007, Signal Process..

[47]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[48]  Aditya Tatu,et al.  Active Contour Models for Manifold Valued Image Segmentation , 2013, Journal of Mathematical Imaging and Vision.

[49]  D. Slepčev,et al.  Continuum Limit of Total Variation on Point Clouds , 2016 .

[50]  Maher Moakher,et al.  Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization , 2006, Visualization and Processing of Tensor Fields.

[51]  M. Bacák Convex Analysis and Optimization in Hadamard Spaces , 2014 .

[52]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[53]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[54]  Brent L. Adams,et al.  ADVANCES IN AUTOMATIC EBSP SINGLE ORIENTATION MEASUREMENTS , 1993 .

[55]  Daniel Cremers,et al.  Total variation for cyclic structures: Convex relaxation and efficient minimization , 2011, CVPR 2011.

[56]  O. P. Ferreira,et al.  Subgradient Algorithm on Riemannian Manifolds , 1998 .

[57]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[58]  Jesús Angulo,et al.  Morphological Processing of Univariate Gaussian Distribution-Valued Images Based on Poincaré Upper-Half Plane Representation , 2014 .

[59]  Philipp Grohs,et al.  ε-subgradient algorithms for locally lipschitz functions on Riemannian manifolds , 2015, Advances in Computational Mathematics.

[60]  Xuecheng Tai,et al.  Augmented-Lagrangian regularization of matrix-valued maps , 2014 .

[61]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[62]  Gabriele Steidl,et al.  Infimal Convolution Coupling of First and Second Order Differences on Manifold-Valued Images , 2017, SSVM.

[63]  P. Rosen,et al.  SYNTHETIC APERTURE RADAR INTERFEROMETRY TO MEASURE EARTH'S SURFACE TOPOGRAPHY AND ITS DEFORMATION , 2000 .

[64]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[65]  Abderrahim Elmoataz,et al.  Nonlocal Discrete Regularization on Weighted Graphs: A Framework for Image and Manifold Processing , 2008, IEEE Transactions on Image Processing.

[66]  Daniel Cremers,et al.  Total Cyclic Variation and Generalizations , 2013, Journal of Mathematical Imaging and Vision.

[67]  René Vidal,et al.  On the Convergence of Gradient Descent for Finding the Riemannian Center of Mass , 2011, SIAM J. Control. Optim..

[68]  O. P. Ferreira,et al.  Proximal Point Algorithm On Riemannian Manifolds , 2002 .

[69]  Freddie Åström,et al.  Image Labeling by Assignment , 2016, Journal of Mathematical Imaging and Vision.

[70]  Carola-Bibiane Schönlieb,et al.  Anisotropic Third-Order Regularization for Sparse Digital Elevation Models , 2013, SSVM.

[71]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[72]  Gabriele Steidl,et al.  A Second Order Nonsmooth Variational Model for Restoring Manifold-Valued Images , 2015, SIAM J. Sci. Comput..

[73]  Gabriele Steidl,et al.  A Parallel Douglas-Rachford Algorithm for Minimizing ROF-like Functionals on Images with Values in Symmetric Hadamard Manifolds , 2015, SIAM J. Imaging Sci..

[74]  Kristian Bredies,et al.  Total Generalized Variation in Diffusion Tensor Imaging , 2013, SIAM J. Imaging Sci..

[75]  Carola-Bibiane Schönlieb,et al.  Analysis and Application of a Nonlocal Hessian , 2014, SIAM J. Imaging Sci..

[76]  Miroslav Bacák,et al.  Computing Medians and Means in Hadamard Spaces , 2012, SIAM J. Optim..

[77]  Gabriele Steidl,et al.  Iterative Multiplicative Filters for Data Labeling , 2016, International Journal of Computer Vision.

[78]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[79]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[80]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[81]  M. Gräf Efficient Algorithms for the Computation of Optimal Quadrature Points on Riemannian Manifolds , 2013 .