A Test for Asymmetry Associated with the Hodges-Lehmann Estimator

Abstract One version of the Hodges-Lehmann estimator, = median{(Xi + Xj )/2, 1 ≤ i, j ≤ n}, is also the minimum distance estimator derived from a particular Cramer-von Mises distance. This distance evaluated at , that is, the minimized distance, provides a natural statistic for testing asymmetry of the underlying distribution.

[1]  Dennis D. Boos,et al.  Minimum Distance Estimators for Location and Goodness of Fit , 1981 .

[2]  D. Dickey Histograms, Percentiles, and Moments , 1981 .

[3]  George E. Policello,et al.  An Asymptotically Distribution-Free Test for Symmetry versus Asymmetry , 1980 .

[4]  R. Loynes The Empirical Distribution Function of Residuals from Generalised Regression , 1980 .

[5]  Raymond J. Carroll,et al.  On Estimating Variances of Robust Estimators When the Errors are Asymmetric , 1979 .

[6]  Thomas P. Hettmansperger,et al.  A robust analysis of the general linear model based on one step R-estimates , 1978 .

[7]  Herbert Solomon,et al.  Approximations to Density Functions Using Pearson Curves , 1978 .

[8]  Dana Quade,et al.  U-statistics for skewness or symmetry , 1978 .

[9]  Kjell A. Doksum,et al.  Plots and tests for symmetry , 1977 .

[10]  Götz Kersting,et al.  Tests for symmetry , 1977 .

[11]  Stephen J. Finch,et al.  Robust Univariate Test of Symmetry , 1977 .

[12]  George Marsaglia,et al.  Improvements on Fast Methods for Generating Normal Random Variables , 1976, Inf. Process. Lett..

[13]  Thomas P. Hettmansperger,et al.  Tests of hypotheses based on ranks in the general linear model , 1976 .

[14]  E. L. Lehmann,et al.  Descriptive Statistics for Nonparametric Models II. Location , 1975 .

[15]  C. J. Lawrence Robust estimates of location : survey and advances , 1975 .

[16]  D. F. Andrews,et al.  Robust Estimates of Location: Survey and Advances. , 1975 .

[17]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[18]  D. Wolfe,et al.  Nonparametric Statistical Methods. , 1974 .

[19]  Louis A. Jaeckel Estimating Regression Coefficients by Minimizing the Dispersion of the Residuals , 1972 .

[20]  James Durbin,et al.  Components of Cramer-von Mises statistics. I , 1972 .

[21]  R. Pyke,et al.  Weak Convergence of a Two-sample Empirical Process and a New Approach to Chernoff-Savage Theorems , 1968 .

[22]  On the Hodges and Lehmann Shift Estimator in the Two Sample Problem , 1966 .

[23]  A. Høyland Robustness of the Hodges-Lehmann Estimates for Shift , 1965 .

[24]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .