Mechanisms of Cellular Uptake of Cell-Penetrating Peptides

Recently, much attention has been given to the problem of drug delivery through the cell-membrane in order to treat and manage several diseases. The discovery of cell penetrating peptides (CPPs) represents a major breakthrough for the transport of large-cargo molecules that may be useful in clinical applications. CPPs are rich in basic amino acids such as arginine and lysine and are able to translocate over membranes and gain access to the cell interior. They can deliver large-cargo molecules, such as oligonucleotides, into cells. Endocytosis and direct penetration have been suggested as the two major uptake mechanisms, a subject still under debate. Unresolved questions include the detailed molecular uptake mechanism(s), reasons for cell toxicity, and the delivery efficiency of CPPs for different cargoes. Here, we give a review focused on uptake mechanisms used by CPPs for membrane translocation and certain experimental factors that affect the mechanism(s).

[1]  S. Dowdy,et al.  Corrigendum to “Cationic TAT peptide transduction domain enters cells by macropinocytosis” [J. Control. Release 102 (2005) 247–253] , 2005 .

[2]  Z. Dominski,et al.  Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Ülo Langel,et al.  Cell entry and antimicrobial properties of eukaryotic cell‐ penetrating peptides , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[4]  Ű. Langel,et al.  N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis. , 2006, Biochemical and biophysical research communications.

[5]  W. Marsden I and J , 2012 .

[6]  D. Hirschberg,et al.  Translocation of Dynorphin Neuropeptides across the Plasma Membrane , 2005, Journal of Biological Chemistry.

[7]  K. Miyajima,et al.  Transbilayer transport of ions and lipids coupled with mastoparan X translocation. , 1996, Biochemistry.

[8]  I. Mellman,et al.  Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide , 2007, Nature.

[9]  C. Chavkin,et al.  Dynorphin is a specific endogenous ligand of the kappa opioid receptor. , 1982, Science.

[10]  J. Rothbard,et al.  Polyarginine enters cells more efficiently than other polycationic homopolymers. , 2000, The journal of peptide research : official journal of the American Peptide Society.

[11]  G. Whittaker,et al.  Dissecting virus entry via endocytosis. , 2002, The Journal of general virology.

[12]  M. Wibo,et al.  PROTEIN DEGRADATION IN CULTURED CELLS , 1974, The Journal of cell biology.

[13]  Miguel A R B Castanho,et al.  Cell-penetrating peptides and antimicrobial peptides: how different are they? , 2006, The Biochemical journal.

[14]  Shiroh Futaki,et al.  Anionic fullerenes, calixarenes, coronenes, and pyrenes as activators of oligo/polyarginines in model membranes and live cells. , 2005, Journal of the American Chemical Society.

[15]  Ülo Langel,et al.  Cell-Penetrating Peptides : Processes and Applications , 2002 .

[16]  S. Futaki,et al.  Arginine magic with new counterions up the sleeve. , 2005, Organic & biomolecular chemistry.

[17]  Ulo Langel,et al.  Cell-penetrating peptides: mechanism and kinetics of cargo delivery. , 2005, Advanced drug delivery reviews.

[18]  Ű. Langel,et al.  A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[19]  Beat Meier,et al.  Prions , 2010 .

[20]  A. Ziegler,et al.  Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. , 2008, Advanced drug delivery reviews.

[21]  B. Nordén,et al.  Membrane binding and translocation of cell-penetrating peptides. , 2004, Biochemistry.

[22]  Ű. Langel,et al.  Cell-penetrating peptides--a brief introduction. , 2006, Biochimica et biophysica acta.

[23]  A. Prochiantz,et al.  The third helix of the Antennapedia homeodomain translocates through biological membranes. , 1994, The Journal of biological chemistry.

[24]  R. Fischer,et al.  A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: fluorophore and cargo dependence of import. , 2002, Biochimica et biophysica acta.

[25]  P. Boisguérin,et al.  Comparison of cellular uptake using 22 CPPs in 4 different cell lines. , 2008, Bioconjugate chemistry.

[26]  S. Futaki,et al.  Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. , 2008, Bioconjugate chemistry.

[27]  Maurice Green,et al.  Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein , 1988, Cell.

[28]  B. Lebleu,et al.  Cellular Uptake of Unconjugated TAT Peptide Involves Clathrin-dependent Endocytosis and Heparan Sulfate Receptors* , 2005, Journal of Biological Chemistry.

[29]  S. Futaki,et al.  Direct Observation of Anion‐Mediated Translocation of Fluorescent Oligoarginine Carriers into and across Bulk Liquid and Anionic Bilayer Membranes , 2005, Chembiochem : a European journal of chemical biology.

[30]  G. Divita,et al.  Interactions of amphipathic CPPs with model membranes. , 2011, Methods in molecular biology.

[31]  Kurt Ballmer-Hofer,et al.  Antennapedia and HIV Transactivator of Transcription (TAT) “Protein Transduction Domains” Promote Endocytosis of High Molecular Weight Cargo upon Binding to Cell Surface Glycosaminoglycans* , 2003, Journal of Biological Chemistry.

[32]  L. Terenius,et al.  Big Dynorphin, a Prodynorphin-Derived Peptide Produces NMDA Receptor-Mediated Effects on Memory, Anxiolytic-Like and Locomotor Behavior in Mice , 2006, Neuropsychopharmacology.

[33]  A. Prochiantz,et al.  Trojan peptides: the penetratin system for intracellular delivery. , 1998, Trends in cell biology.

[34]  Satyajit Mayor,et al.  Pathways of clathrin-independent endocytosis , 2007, Nature Reviews Molecular Cell Biology.

[35]  B Poole,et al.  Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[37]  M. Morris,et al.  Interactions of amphipathic CPPs with model membranes. , 2006, Biochimica et biophysica acta.

[38]  A. Gräslund,et al.  Cell-penetrating peptides: small from inception to application , 2004, Quarterly Reviews of Biophysics.

[39]  Steven F Dowdy,et al.  Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis , 2004, Nature Medicine.

[40]  Eric Vives,et al.  Cell-penetrating Peptides , 2003, The Journal of Biological Chemistry.

[41]  M. Giacca,et al.  Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. , 2004, The Journal of biological chemistry.

[42]  Gunnar P. H. Dietz,et al.  Delivery of bioactive molecules into the cell: the Trojan horse approach , 2004, Molecular and Cellular Neuroscience.

[43]  Ü. Langel,et al.  Induction of splice correction by cell‐penetrating peptide nucleic acids , 2006, The journal of gene medicine.

[44]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[45]  K. Bedecs,et al.  Antiprion properties of prion protein‐derived cell‐penetrating peptides , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[46]  A. Prochiantz,et al.  Cell Internalization of the Third Helix of the Antennapedia Homeodomain Is Receptor-independent* , 1996, The Journal of Biological Chemistry.

[47]  R. B. Merrifield,et al.  All-D amino acid-containing channel-forming antibiotic peptides. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Arwyn Tomos Jones,et al.  Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides , 2007, Journal of cellular and molecular medicine.

[49]  S. Futaki,et al.  Arginine-rich Peptides , 2001, The Journal of Biological Chemistry.

[50]  M. Belting,et al.  Nuclear Targeting of Macromolecular Polyanions by an HIV-Tat Derived Peptide , 2002, The Journal of Biological Chemistry.

[51]  Priscille Brodin,et al.  A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus* , 1997, The Journal of Biological Chemistry.

[52]  S. Futaki,et al.  Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. , 2009, Biochimica et biophysica acta.

[53]  B. Nordén,et al.  Dual functions of the human antimicrobial peptide LL-37-target membrane perturbation and host cell cargo delivery. , 2010, Biochimica et biophysica acta.

[54]  P. F. Almeida,et al.  Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: from kinetics to thermodynamics. , 2009, Biochemistry.

[55]  Rainer Fischer,et al.  A Comprehensive Model for the Cellular Uptake of Cationic Cell‐penetrating Peptides , 2007, Traffic.

[56]  Ü. Langel,et al.  Differential membrane perturbation caused by the cell penetrating peptide Tp10 depending on attached cargo , 2007, FEBS letters.

[57]  A. Bahar,et al.  Antimicrobial Peptides , 2013, Pharmaceuticals.

[58]  Stanley B. Prusiner,et al.  Nobel Lecture: Prions , 1998 .

[59]  K. Pattabiraman,et al.  The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Christoph Patsch,et al.  The FASEB Journal Research Communication Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells , 2022 .

[61]  A. Prochiantz,et al.  alpha-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. , 1991, The New biologist.

[62]  B. Nordén,et al.  Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells. , 2003, Biochemical and biophysical research communications.

[63]  R. Brasseur,et al.  Deletion analogues of transportan. , 2000, Biochimica et biophysica acta.

[64]  Huey W. Huang,et al.  Many-body effect of antimicrobial peptides: on the correlation between lipid's spontaneous curvature and pore formation. , 2005, Biophysical journal.

[65]  Jeremy C Simpson,et al.  Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. , 2004, Molecular therapy : the journal of the American Society of Gene Therapy.

[66]  S. Futaki,et al.  Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[67]  J. Rothbard,et al.  Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. , 2004, Journal of the American Chemical Society.

[68]  G. Heijne,et al.  Recognition of transmembrane helices by the endoplasmic reticulum translocon , 2005, Nature.

[69]  E. Eklund,et al.  The Human Antimicrobial Peptide LL-37 Transfers Extracellular DNA Plasmid to the Nuclear Compartment of Mammalian Cells via Lipid Rafts and Proteoglycan-dependent Endocytosis* , 2004, Journal of Biological Chemistry.

[70]  S. Futaki,et al.  Direct and rapid cytosolic delivery using cell-penetrating peptides mediated by pyrenebutyrate. , 2006, ACS chemical biology.

[71]  M. Pooga,et al.  Cell penetration by transportan. , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[72]  Ű. Langel,et al.  Cell transduction pathways of transportans. , 2005, Bioconjugate chemistry.

[73]  M. Giacca,et al.  The Basic Domain in HIV-1 Tat Protein as a Target for Polysulfonated Heparin-mimicking Extracellular Tat Antagonists* , 1998, The Journal of Biological Chemistry.

[74]  R. Vandenbroucke,et al.  Title: the Use of Inhibitors to Study Endocytic Pathways of Gene Carriers: Optimisation and Pitfalls the Use of Inhibitors to Study Endocytic Pathways of Gene Carriers: Optimisation and Pitfalls Dries Vercauteren , 2022 .

[75]  R. Kole,et al.  Up-regulation of luciferase gene expression with antisense oligonucleotides: implications and applications in functional assay development. , 1998, Biochemistry.

[76]  M. Giacca,et al.  Cell Membrane Lipid Rafts Mediate Caveolar Endocytosis of HIV-1 Tat Fusion Proteins* , 2003, Journal of Biological Chemistry.

[77]  Y. Shai,et al.  Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. , 1992, Biochemistry.

[78]  Michael R. Yeaman,et al.  Mechanisms of Antimicrobial Peptide Action and Resistance , 2003, Pharmacological Reviews.

[79]  Ü. Langel,et al.  A Novel Cell-penetrating Peptide, M918, for Efficient Delivery of Proteins and Peptide Nucleic Acids. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[80]  Ulo Langel,et al.  Protein cargo delivery properties of cell-penetrating peptides. A comparative study. , 2004, Bioconjugate chemistry.

[81]  T. Bártfai,et al.  VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. , 2001, Experimental cell research.

[82]  A. Prochiantz,et al.  Antennapedia homeobox peptide regulates neural morphogenesis. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Ü. Langel,et al.  Delivery of short interfering RNA using endosomolytic cell‐penetrating peptides , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[84]  M. Johansson,et al.  Is VP22 nuclear homing an artifact? , 2001, Nature Biotechnology.

[85]  C. Chavkin,et al.  Dynorphin is a specific endogenous ligand of the κ opioid receptor Science, 215 (1982) 413–415 , 1982, Pain.

[86]  Steven F Dowdy,et al.  Cationic TAT peptide transduction domain enters cells by macropinocytosis. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[87]  M. Giacca,et al.  Internalization of HIV-1 Tat Requires Cell Surface Heparan Sulfate Proteoglycans* , 2001, The Journal of Biological Chemistry.

[88]  Ulo Langel,et al.  Structure-activity relationship study of the cell-penetrating peptide pVEC. , 2006, Biochimica et biophysica acta.

[89]  Y. Shai,et al.  Mode of action of membrane active antimicrobial peptides. , 2002, Biopolymers.

[90]  Y. Shai,et al.  Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acid-containing antimicrobial peptides: a plausible mode of action. , 2003, Biochemistry.

[91]  Ű. Langel,et al.  Cell-penetrating peptides: mechanisms and applications. , 2005, Current pharmaceutical design.