Genotype-Phenotype Maps Maximizing Evolvability: Modularity Revisited

The mechanisms translating genetic to phenotypic variation determine the distribution of heritable phenotypic variance available to selection. Pleiotropy is an aspect of this structure that limits independent variation of characters. Modularization of pleiotropy has been suggested to promote evolvability by restricting genetic covariance among unrelated characters and reducing constraints due to correlated response. However, modularity may also reduce total genetic variation of characters. We study the properties of genotype-phenotype maps that maximize average conditional evolvability, measured as the amount of unconstrained genetic variation in random directions of phenotypic space. In general, maximal evolvability occurs by maximizing genetic variance and minimizing genetic covariance. This does not necessarily require modularity, only patterns of pleiotropy that cancel on average. The detailed structure of the most evolvable genotype-phenotype maps depends on the distribution of molecular variance. When molecular variance is determined by mutation-selection equilibrium either highly pleiotropic or highly modular genotype-phenotype maps can be optimal, depending on the mutation rate and the relative strengths of stabilizing selection on the characters.

[1]  Adaptation , 1926 .

[2]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[3]  J. B. S. Haldane,et al.  The Effect of Variation of Fitness , 1937, The American Naturalist.

[4]  H. Muller,et al.  Our load of mutations. , 1950, American journal of human genetics.

[5]  R. L. Berg,et al.  THE ECOLOGICAL SIGNIFICANCE OF CORRELATION PLEIADES , 1960 .

[6]  H. Ehlich,et al.  Determinantenabschätzungen für binäre Matrizen , 1964 .

[7]  J. Brenner The Hadamard Maximum Determinant Problem , 1972 .

[8]  R. Lande QUANTITATIVE GENETIC ANALYSIS OF MULTIVARIATE EVOLUTION, APPLIED TO BRAIN:BODY SIZE ALLOMETRY , 1979, Evolution; international journal of organic evolution.

[9]  C. W. Harper,et al.  Order in living organisms : a systems analysis of evolution , 1980 .

[10]  M. Kimura The Neutral Theory of Molecular Evolution: Introduction , 1983 .

[11]  M. Turelli Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. , 1984, Theoretical population biology.

[12]  J. Cheverud,et al.  Quantitative genetics and developmental constraints on evolution by selection. , 1984, Journal of theoretical biology.

[13]  M. Turelli Effects of pleiotropy on predictions concerning mutation-selection balance for polygenic traits. , 1985, Genetics.

[14]  Günter P. Wagner,et al.  The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution , 1988 .

[15]  G. Wagner,et al.  Multivariate mutation-selection balance with constrained pleiotropic effects. , 1989, Genetics.

[16]  B. Charlesworth,et al.  Unravelling the Evolutionary Advantage of Sex : a Commentary on ' Mutation–selection Balance and the Evolutionary Advantage of Sex and Recombination ' , 2022 .

[17]  D. Houle GENETIC COVARIANCE OF FITNESS CORRELATES: WHAT GENETIC CORRELATIONS ARE MADE OF AND WHY IT MATTERS , 1991, Evolution; international journal of organic evolution.

[18]  H. A. Orr,et al.  The Genetics of Adaptation: A Reassessment , 1992, The American Naturalist.

[19]  J. Hofbauer,et al.  Mutation load and mutation-selection-balance in quantitative genetic traits , 1994, Journal of mathematical biology.

[20]  M. Gromko UNPREDICTABILITY OF CORRELATED RESPONSE TO SELECTION: PLEIOTROPY AND SAMPLING INTERACT , 1995, Evolution; international journal of organic evolution.

[21]  L. Altenberg,et al.  PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY , 1996, Evolution; international journal of organic evolution.

[22]  G. Wagner HOMOLOGUES, NATURAL KINDS AND THE EVOLUTION OF MODULARITY , 1996 .

[23]  J. Cheverud Developmental Integration and the Evolution of Pleiotropy , 1996 .

[24]  G. Wagner,et al.  Adaptive Inertia Caused by Hidden Pleiotropic Effects , 1997 .

[25]  F. Taddei,et al.  Evolution of Evolvability a , 1999 .

[26]  G. P. Wagner,et al.  Is the genotype-phenotype map modular? A statistical approach using mouse quantitative trait loci data. , 2000, Genetics.

[27]  L. Hurst Epistasis and the Evolutionary Process , 2000, Heredity.

[28]  H. A. Orr,et al.  ADAPTATION AND THE COST OF COMPLEXITY , 2000, Evolution; international journal of organic evolution.

[29]  R. Buerger The Mathematical Theory of Selection, Recombination, and Mutation , 2000 .

[30]  T. Jukes,et al.  The neutral theory of molecular evolution. , 2000, Genetics.

[31]  G. Wagner The character concept in evolutionary biology , 2001 .

[32]  G. Wagner,et al.  Modeling genetic architecture: a multilinear theory of gene interaction. , 2001, Theoretical population biology.

[33]  J. Cheverud,et al.  Genetic architecture of adiposity in the cross of LG/J and SM/J inbred mice , 2001, Mammalian Genome.

[34]  L. Kruglyak,et al.  Genetic Dissection of Transcriptional Regulation in Budding Yeast , 2002, Science.

[35]  J. Welch,et al.  Nonequivalent Loci and the distribution of mutant effects. , 2002, Genetics.

[36]  LANDEl,et al.  THE GENETIC COVARIANCE BETWEEN CHARACTERS MAINTAINED BY PLEIOTROPIC MUTATIONS , 2003 .

[37]  G. Wagner,et al.  Epistasis in Polygenic Traits and the Evolution of Genetic Architecture under Stabilizing Selection , 2003, The American Naturalist.

[38]  T. F. Hansen,et al.  Evolvability and genetic constraint in Dalechampia blossoms: genetic correlations and conditional evolvability. , 2003, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[39]  C. Pélabon,et al.  Evolvability and genetic constraint in Dalechampia blossoms: components of variance and measures of evolvability , 2003, Journal of evolutionary biology.

[40]  J. Welch,et al.  Non-equivalent loci and mutation-selection balance. , 2003, Theoretical Population Biology.

[41]  John J. Welch,et al.  MODULARITY AND THE COST OF COMPLEXITY , 2003, Evolution; international journal of organic evolution.

[42]  T. F. Hansen Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. , 2003, Bio Systems.

[43]  J. Cheverud,et al.  Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. , 2003, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[44]  Clifford H. Taubes,et al.  Towards a theory of evolutionary adaptation , 2004, Genetica.

[45]  Patrick C Phillips,et al.  The Opportunity for Canalization and the Evolution of Genetic Networks , 2004, The American Naturalist.

[46]  Christian Peter Klingenberg,et al.  Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. , 2004, Genetics.

[47]  J. Cheverud,et al.  Pleiotropic effects on mandibular morphology II: differential epistasis and genetic variation in morphological integration. , 2004, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[48]  G. Wagner,et al.  Rupert Riedl and the re-synthesis of evolutionary and developmental biology: body plans and evolvability. , 2004, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[49]  G. Wagner,et al.  The Population Genetic Theory of Hidden Variation and Genetic Robustness , 2004, Genetics.

[50]  J. Micol,et al.  Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: evidence for modular genetic architecture , 2005, Evolution & development.

[51]  J. Welch,et al.  Fisher’s Microscope and Haldane’s Ellipse , 2005, The American Naturalist.

[52]  W. Bradshaw,et al.  Epistasis Underlying a Fitness Trait Within a Natural Population of the Pitcher-Plant Mosquito, Wyeomyia smithii , 2005, Genetics.

[53]  P. Yelick,et al.  Integration and evolution of the cichlid mandible: the molecular basis of alternate feeding strategies. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Rachel B. Brem,et al.  The landscape of genetic complexity across 5,700 gene expression traits in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Günter P. Wagner,et al.  Complex Adaptations and the Evolution of Evolvability , 2005 .

[56]  Russell L. Malmberg,et al.  Epistasis for Fitness-Related Quantitative Traits in Arabidopsis thaliana Grown in the Field and in the Greenhouse , 2005, Genetics.

[57]  Evolution of Genetic Networks , 2005 .

[58]  J. Mezey,et al.  THE DIMENSIONALITY OF GENETIC VARIATION FOR WING SHAPE IN DROSOPHILA MELANOGASTER , 2005, Evolution; international journal of organic evolution.

[59]  R. Mauricio Genetics of adaptation , 2005 .

[60]  T. Metzinger The evolution of evolvability Ruth Garret Millikan Varieties of Meaning: The 2002 Jean Nicod Lectures , 2005, Trends in Cognitive Sciences.

[61]  Joachim Hermisson,et al.  The role of epistatic gene interactions in the response to selection and the evolution of evolvability. , 2005, Theoretical population biology.

[62]  Emma Hine,et al.  Determining the Effective Dimensionality of the Genetic Variance–Covariance Matrix , 2006, Genetics.

[63]  T. Lenormand,et al.  A GENERAL MULTIVARIATE EXTENSION OF FISHER'S GEOMETRICAL MODEL AND THE DISTRIBUTION OF MUTATION FITNESS EFFECTS ACROSS SPECIES , 2006, Evolution; international journal of organic evolution.

[64]  Marcel Salathé,et al.  The effect of multifunctionality on the rate of evolution in yeast. , 2006, Molecular biology and evolution.

[65]  Joachim Hermisson,et al.  EVOLUTION OF GENETIC ARCHITECTURE UNDER DIRECTIONAL SELECTION , 2006, Evolution; international journal of organic evolution.

[66]  J. Cheverud,et al.  The contribution of epistatic pleiotropy to the genetic architecture of covariation among polygenic traits in mice , 2006, Evolution & development.

[67]  T. F. Hansen The Evolution of Genetic Architecture , 2006 .

[68]  G. Wagner,et al.  The road to modularity , 2007, Nature Reviews Genetics.

[69]  Bas J Zwaan,et al.  Differences in the selection response of serially repeated color pattern characters: Standing variation, development, and evolution , 2008, BMC Evolutionary Biology.

[70]  X. Gu Evolutionary Framework for Protein Sequence Evolution and Gene Pleiotropy , 2007, Genetics.

[71]  Reinhard Bürger,et al.  THE MUTATION MATRIX AND THE EVOLUTION OF EVOLVABILITY , 2007, Evolution; international journal of organic evolution.

[72]  R. Doerge,et al.  Global eQTL Mapping Reveals the Complex Genetic Architecture of Transcript-Level Variation in Arabidopsis , 2007, Genetics.

[73]  M. Lynch The evolution of genetic networks by non-adaptive processes , 2007, Nature Reviews Genetics.

[74]  M. Lynch The frailty of adaptive hypotheses for the origins of organismal complexity , 2007, Proceedings of the National Academy of Sciences.

[75]  M. Blows,et al.  THE PHENOTYPIC AND GENETIC COVARIANCE STRUCTURE OF DROSPHILID WINGS , 2007, Evolution; international journal of organic evolution.

[76]  James M. Cheverud,et al.  GENETIC VARIATION IN PLEIOTROPY: DIFFERENTIAL EPISTASIS AS A SOURCE OF VARIATION IN THE ALLOMETRIC RELATIONSHIP BETWEEN LONG BONE LENGTHS AND BODY WEIGHT , 2007, Evolution; international journal of organic evolution.

[77]  M. Kirkpatrick Patterns of quantitative genetic variation in multiple dimensions , 2009, Genetica.

[78]  D. Houle,et al.  Measuring and comparing evolvability and constraint in multivariate characters , 2008, Journal of evolutionary biology.

[79]  G. Wagner,et al.  Pleiotropic scaling of gene effects and the ‘cost of complexity’ , 2008, Nature.

[80]  A. Le Rouzic,et al.  Dissection of the Genetic Architecture of Body Weight in Chicken Reveals the Impact of Epistasis on Domestication Traits , 2008, Genetics.

[81]  Sterling Sawaya,et al.  THE GENETICS OF ADAPTIVE SHAPE SHIFT IN STICKLEBACK: PLEIOTROPY AND EFFECT SIZE , 2007, Evolution; international journal of organic evolution.

[82]  Jun S. Liu,et al.  Systematic Analysis of Pleiotropy in C. elegans Early Embryogenesis , 2008, PLoS Comput. Biol..

[83]  G. Wagner,et al.  Evolution of Evolvability in a Developmental Model , 2008, Evolution; international journal of organic evolution.

[84]  J. Cheverud,et al.  Phenotypic Integration Without Modularity: Testing Hypotheses About the Distribution of Pleiotropic Quantitative Trait Loci in a Continuous Space , 2009, Evolutionary Biology.

[85]  Trish E. Parsons,et al.  Deciphering the Palimpsest: Studying the Relationship Between Morphological Integration and Phenotypic Covariation , 2009, Evolutionary Biology.

[86]  B. Walsh,et al.  Abundant Genetic Variation + Strong Selection = Multivariate Genetic Constraints: A Geometric View of Adaptation , 2009 .

[87]  Philipp Mitteroecker,et al.  The Developmental Basis of Variational Modularity: Insights from Quantitative Genetics, Morphometrics, and Developmental Biology , 2009, Evolutionary Biology.

[88]  Jianzhi Zhang,et al.  Genomic patterns of pleiotropy and the evolution of complexity , 2010, Proceedings of the National Academy of Sciences.

[89]  Jason H. Moore,et al.  Missing heritability and strategies for finding the underlying causes of complex disease , 2010, Nature Reviews Genetics.

[90]  G. Wagner,et al.  Evolution of adaptive phenotypic variation patterns by direct selection for evolvability , 2011, Proceedings of the Royal Society B: Biological Sciences.

[91]  Gerome Breen,et al.  Genetic Variation , 2020, Population Genetics with R.

[92]  G. Wagner,et al.  Directionality of Epistasis in a Murine Intercross Population , 2010, Genetics.

[93]  J. Fierst Sexual Dimorphism Increases Evolvability in a Genetic Regulatory Network , 2011, Evolutionary Biology.

[94]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[95]  T. Lenormand,et al.  FISHER'S MODEL AND THE GENOMICS OF ADAPTATION: RESTRICTED PLEIOTROPY, HETEROGENOUS MUTATION, AND PARALLEL EVOLUTION , 2010, Evolution; international journal of organic evolution.

[96]  X. Gu,et al.  A preliminary analysis of gene pleiotropy estimated from protein sequences. , 2010, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[97]  Benedikt Hallgrímsson,et al.  Epigenetics: Linking Genotype and Phenotype in Development and Evolution , 2011 .

[98]  M. Pavlicev,et al.  Evolution of pleiotropy: epistatic interaction pattern supports a mechanistic model underlying variation in genotype-phenotype map. , 2011, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[99]  C. Weinig,et al.  The quantitative-genetic and QTL architecture of trait integration and modularity in Brassica rapa across simulated seasonal settings , 2011, Heredity.

[100]  M. Mahaney,et al.  Modularity in the mammalian dentition: mice and monkeys share a common dental genetic architecture. , 2011, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[101]  G. Wagner,et al.  The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms , 2011, Nature Reviews Genetics.

[102]  Christopher R. Herlihy,et al.  ELIMINATION OF A GENETIC CORRELATION BETWEEN THE SEXES VIA ARTIFICIAL CORRELATIONAL SELECTION , 2011, Evolution; international journal of organic evolution.

[103]  LandscapesByPeter F. Stadlera Towards Theory: , 2021, Philosophy Behind Bars.