Parallelized Two-Scale Analysis with a PC Cluster for Elastic-Plastic Heterogeneous Media
暂无分享,去创建一个
[1] N. Kikuchi,et al. A class of general algorithms for multi-scale analyses of heterogeneous media , 2001 .
[2] Mark S. Shephard,et al. Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .
[3] Ahmet S. Cakmak,et al. A hardening orthotropic plasticity model for non‐frictional composites: Rate formulation and integration algorithm , 1994 .
[4] Somnath Ghosh,et al. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method , 1995 .
[5] E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory , 1980 .
[6] J. Michel,et al. Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .
[7] G. Allaire. Homogenization and two-scale convergence , 1992 .
[8] P. Suquet,et al. Elements of Homogenization Theory for Inelastic Solid Mechanics, in Homogenization Techniques for Composite Media , 1987 .
[9] Ugo Galvanetto,et al. NUMERICAL HOMOGENIZATION OF PERIODIC COMPOSITE MATERIALS WITH NON-LINEAR MATERIAL COMPONENTS , 1999 .
[10] N. Kikuchi,et al. Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .
[11] J. C. Simo,et al. Numerical analysis and simulation of plasticity , 1998 .
[12] Hervé Moulinec,et al. A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.