On testing global optimization algorithms for space trajectory design

In this paper we discuss the procedures to test a global search algorithm applied to a space trajectory design problem. Then, we present some performance indexes that can be used to evaluate the effectiveness of global optimization algorithms. The performance indexes are then compared highlighting the actual significance of each one of them. A number of global optimization algorithms are tested on four typical space trajectory design problems. From the results of the proposed testing procedure we infer for each pair algorithm-problem the relation between the heuristics implemented in the solution algorithm and the main characteristics of the problem under investigation. From this analysis we derive a novel interpretation of some evolutionary heuristics, based on dynamical system theory and we significantly improve the performance of one of the tested algorithms.

[1]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[2]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[4]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[5]  P. Cage,et al.  Interplanetary trajectory optimization using a genetic algorithm , 1994 .

[6]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[7]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[8]  G. Rauwolf,et al.  Near-optimal low-thrust orbit transfers generated by a genetic algorithm , 1996 .

[9]  C. Adcock Sample size determination : a review , 1997 .

[10]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[11]  K. G. Sukhanov,et al.  Multiple Gravity Assist Interplanetary Trajectories , 1998 .

[12]  Robert H. Leary,et al.  Global Optimization on Funneling Landscapes , 2000, J. Glob. Optim..

[13]  David B. Spencer,et al.  Optimal Spacecraft Rendezvous Using Genetic Algorithms , 2002 .

[14]  Massimiliano Vasile,et al.  Design of Earth–Mars transfer trajectories using evolutionary-branching technique☆ , 2003 .

[15]  Oded Galor,et al.  Introduction to Stability Analysis of Discrete Dynamical Systems , 2004 .

[16]  Marco Locatelli,et al.  On the Multilevel Structure of Global Optimization Problems , 2005, Comput. Optim. Appl..

[17]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[18]  Bernardetta Addis,et al.  Local optima smoothing for global optimization , 2005, Optim. Methods Softw..

[19]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[20]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[21]  Marjan Mernik,et al.  Entropy-Driven Parameter Control for Evolutionary Algorithms , 2007, Informatica.

[22]  Michael Cupples,et al.  Interplanetary Mission Design Using Differential Evolution , 2007 .

[23]  D. Mortari,et al.  On the n-Impulse Orbit Transfer using Genetic Algorithms , 2007 .

[24]  Massimiliano Vasile,et al.  A hybrid multiagent approach for global trajectory optimization , 2009, J. Glob. Optim..