A $$C^m$$ C m Lusin approximation theorem for horizontal curves in the Heisenberg group

We prove a $$C^m$$ C m Lusin approximation theorem for horizontal curves in the Heisenberg group. This states that every absolutely continuous horizontal curve whose horizontal velocity is $$m-1$$ m - 1 times $$L^1$$ L 1 differentiable almost everywhere coincides with a $$C^m$$ C m horizontal curve except on a set of small measure. Conversely, we show that the result no longer holds if $$L^1$$ L 1 differentiability is replaced by approximate differentiability. This shows our result is optimal and highlights differences between the Heisenberg and Euclidean settings.

[1]  A Measure Zero UDS in the Heisenberg Group , 2017 .

[2]  S. K. Vodop’yanov,et al.  Whitney-type theorems on extension of functions on Carnot groups , 2006 .

[3]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[4]  P. Pansu,et al.  Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .

[5]  S. Bianchini,et al.  On the Lp-differentiability of certain classes of functions , 2014 .

[6]  C. Fefferman Whitney’s extension problems and interpolation of data , 2008 .

[7]  Charles Fefferman,et al.  A sharp form of Whitney's extension theorem , 2005 .

[8]  L. Evans Measure theory and fine properties of functions , 1992 .

[9]  J. Heinonen,et al.  Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients , 2015 .

[10]  H. Whitney Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .

[11]  Francesco Uguzzoni,et al.  Stratified Lie groups and potential theory for their sub-Laplacians , 2007 .

[12]  Universal differentiability sets in Carnot groups of arbitrarily high step , 2017, 1711.11433.

[13]  A $C^m$ Whitney extension theorem for horizontal curves in the Heisenberg group , 2018, Transactions of the American Mathematical Society.

[14]  Fu Cheng Hsiang On differentiable functions , 1960 .

[15]  S. Campanato Proprietà di una famiglia di spazi funzionali , 1964 .

[16]  Charles Fefferman,et al.  C m extension by linear operators , 2007 .

[17]  Scott Zimmerman The Whitney Extension Theorem for $$C^1$$C1, Horizontal Curves in the Heisenberg Group , 2015, 1507.02240.

[18]  A. Pinamonti,et al.  Porosity and differentiability of Lipschitz maps from stratified groups to Banach homogeneous groups , 2017, Annali di Matematica Pura ed Applicata (1923 -).

[19]  Charles Fefferman,et al.  Whitney’s extension problem for $C^m$ , 2006 .

[20]  A. Pinamonti,et al.  A measure zero universal differentiability set in the Heisenberg group , 2015, 1505.07986.

[21]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[22]  Bruno Franchi,et al.  Rectifiability and perimeter in the Heisenberg group , 2001 .

[23]  Lusin Approximation and Horizontal Curves in Carnot Groups , 2014, 1412.2531.

[24]  M. Sigalotti,et al.  On the Whitney extension property for continuously differentiable horizontal curves in sub-Riemannian manifolds , 2017, 1708.02795.

[25]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .

[26]  Lusin approximation for horizontal curves in step 2 Carnot groups , 2016, 1602.02607.

[27]  Katja Gruenewald,et al.  Topics On Analysis In Metric Spaces , 2016 .

[28]  Scott D. Pauls,et al.  An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem , 2007 .

[29]  M. Sigalotti,et al.  Pliability, or the whitney extension theorem for curves in carnot groups , 2016, 1603.02639.

[30]  F. S. Cassano,et al.  On the structure of finite perimeter sets in step 2 Carnot groups , 2003 .