Valence band states in an InAs/AlAsSb multi-quantum well hot carrier absorber

[1]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[2]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[3]  Leo,et al.  Hot-carrier energy-loss rates in GaAs/AlxGa , 1988, Physical review. B, Condensed matter.

[4]  Bin Wang,et al.  Enhanced hot electron lifetimes in quantum wells with inhibited phonon coupling , 2018, Scientific Reports.

[5]  L. Hirst,et al.  Fundamental losses in solar cells , 2009 .

[6]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[7]  A. Nozik,et al.  Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers , 2006 .

[8]  P. G. Klemens,et al.  Anharmonic Decay of Optical Phonons , 1966 .

[9]  L. Lombez,et al.  Thermalisation rate study of GaSb-based heterostructures by continuous wave photoluminescence and their potential as hot carrier solar cell absorbers , 2012 .

[10]  Gavin Conibeer,et al.  Investigation of theoretical efficiency limit of hot carriers solar cells with a bulk indium nitride absorber , 2010 .

[11]  M. Green,et al.  Interplay between the hot phonon effect and intervalley scattering on the cooling rate of hot carriers in GaAs and InP , 2012 .

[12]  S. Vijeyaragunathan,et al.  Suppression of phonon‐mediated hot carrier relaxation in type‐II InAs/AlAsxSb1 − x quantum wells: a practical route to hot carrier solar cells , 2015, 1511.00042.

[13]  Christopher G. Bailey,et al.  Enhanced Hot-Carrier Effects in InAlAs/InGaAs Quantum Wells , 2014, IEEE Journal of Photovoltaics.

[14]  Katherine Smith,et al.  Demonstration of a hot‐carrier photovoltaic cell , 2014 .

[15]  G. D. Sanders,et al.  Interband and intraband relaxation dynamics in InSb based quantum wells , 2016 .

[16]  L. Lombez,et al.  Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  Jenny Nelson,et al.  Observation of suppressed radiative recombination in single quantum well p-i-n photodiodes , 1997 .

[18]  A. Gossard,et al.  Steady-state and picosecond investigation of hot carrier-phonon interactions in 2D systems , 1986 .

[19]  P. Kocevar,et al.  Electronic power transfer in pulsed laser excitation of polar semiconductors , 1983 .

[20]  A. Gossard,et al.  Electric field induced heating of high mobility electrons in modulation-doped GaAs-AlGaAs heterostructures , 1983 .

[21]  B. Ridley,et al.  Hot-electron energy relaxation rates in GaAs/GaAlAs quantum wells , 1989 .

[22]  A. Forchel,et al.  Hot carrier relaxation and recombination in GaSb/AlSb quantum wells , 1988 .

[23]  T. Motohiro,et al.  A hot-carrier solar cell with optical energy selective contacts , 2011 .

[24]  Tetsuya D. Mishima,et al.  Effects of localization on hot carriers in InAs/AlAsxSb1–x quantum wells , 2015 .

[25]  D. C. Law,et al.  35.8% space and 38.8% terrestrial 5J direct bonded cells , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[26]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[27]  Gavin Conibeer,et al.  Progress on hot carrier cells , 2009 .

[28]  Shah,et al.  Energy-loss rates for hot electrons and holes in GaAs quantum wells. , 1985, Physical review letters.

[29]  Robert J. Walters,et al.  Experimental demonstration of hot-carrier photo-current in an InGaAs quantum well solar cell , 2014 .

[30]  C. Palmstrøm,et al.  Dynamics of photoexcited carriers and spins in InAsP ternary alloys , 2013 .

[31]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[32]  Peter T. Landsberg,et al.  THE CARNOT FACTOR IN SOLAR-CELL THEORY , 1998 .

[33]  Levi,et al.  Hot-carrier cooling in GaAs: Quantum wells versus bulk. , 1993, Physical review. B, Condensed matter.

[34]  Technology-compatible hot carrier solar cell with energy selective hot carrier absorber and carrier-selective contacts , 2012 .

[35]  R. Walters,et al.  Effect of occupation of the excited states and phonon broadening on the determination of the hot carrier temperature from continuous wave photoluminescence in InGaAsP quantum well absorbers , 2017 .

[36]  Masakazu Sugiyama,et al.  Hot Carriers in Quantum Wells for Photovoltaic Efficiency Enhancement , 2014, IEEE Journal of Photovoltaics.