Development of the zebrafish lateral line

The lateral line system is simple (comprising six cell types), its sense organs form according to a defined and reproducible pattern, and its neurons are easily visualized. In the zebrafish, these advantages can be combined with a wealth of genetic tools, making this system ideally suited to a combined molecular, cellular and genetic analysis. Recent progress has taken advantage of these various qualities to elucidate the mechanism that drives the migration from head to tail of the sense organ precursor cells, and to approach the questions surrounding axonal guidance and target recognition.

[1]  C. Chien,et al.  How the lateral line gets its glia , 2002, Trends in Neurosciences.

[2]  W. Shoji,et al.  Zebrafish semaphorin Z1a collapses specific growth cones and alters their pathway in vivo. , 1998, Development.

[3]  R. Lehmann,et al.  The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival , 2003, Development.

[4]  Matthias Landgraf,et al.  Genetic Specification of Axonal Arbors atonal Regulates robo3 to Position Terminal Branches in the Drosophila Nervous System , 2003, Neuron.

[5]  W. K. Metcalfe,et al.  Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. , 1990, Development.

[6]  Yoshiaki Yamada,et al.  Development of lateral line organs in leptocephali of the freshwater eel Anguilla japonica (Teleostei, Anguilliformes) , 2002, Journal of morphology.

[7]  A. Ghysen,et al.  Cell migration in the postembryonic development of the fish lateral line. , 2002, Development.

[8]  V. Ledent,et al.  Postembryonic development of the posterior lateral line in zebrafish. , 2002, Development.

[9]  R. Kelsh,et al.  Expression of zebrafish fkd6 in neural crest-derived glia , 2000, Mechanisms of Development.

[10]  A. Hudspeth,et al.  Expression and phylogeny of claudins in vertebrate primordia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Ghysen,et al.  Neuronal differences prefigure somatotopy in the zebrafish lateral line. , 2001, Development.

[12]  M. Schachner,et al.  Antibody to the HNK-1 glycoepitope affects fasciculation and axonal pathfinding in the developing posterior lateral line nerve of embryonic zebrafish , 2001, Mechanisms of Development.

[13]  A. Ghysen,et al.  Somatotopy of the lateral line projection in larval zebrafish. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Smith,et al.  Development of the mechanoreceptive lateral-line system in the axolotl: placode specification, guidance of migration, and the origin of neuromast polarity , 1990, Anatomy and Embryology.

[15]  C. Nüsslein-Volhard,et al.  A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor , 2003, Nature.

[16]  D. Meyer,et al.  Guidance of Primordial Germ Cell Migration by the Chemokine SDF-1 , 2002, Cell.

[17]  L. S. Stone,et al.  Experiments on the development of the cranial ganglia and the lateral line sense organs in Amblystoma punctatum , 1922 .

[18]  B. Dickson,et al.  Selecting a Longitudinal Pathway Robo Receptors Specify the Lateral Position of Axons in the Drosophila CNS , 2000, Cell.

[19]  C. Nüsslein-Volhard,et al.  Migration and Function of a Glial Subtype in the Vertebrate Peripheral Nervous System , 2002, Neuron.

[20]  A. Ghysen,et al.  A genetic programme for neuronal connectivity. , 2000, Trends in genetics : TIG.

[21]  E. Hassan Hydrodynamic Imaging of the Surroundings by the Lateral Line of the Blind Cave Fish Anoptichthys jordani , 1989 .

[22]  C. Chien,et al.  Cloning and expression of three zebrafish roundabout homologs suggest roles in axon guidance and cell migration , 2001, Developmental dynamics : an official publication of the American Association of Anatomists.

[23]  Eric Schabtach,et al.  Anatomy of the posterior lateral line system in young larvae of the zebrafish , 1985, The Journal of comparative neurology.

[24]  Paula M. Mabee,et al.  A dual embryonic origin for vertebrate mechanoreceptors. , 1994, Science.

[25]  A. Ghysen,et al.  Early efferent innervation of the zebrafish lateral line , 2001, The Journal of comparative neurology.

[26]  M. Itoh,et al.  Expression of proneural and neurogenic genes in the zebrafish lateral line primordium correlates with selection of hair cell fate in neuromasts , 2001, Mechanisms of Development.

[27]  R. G. Harrison Experimentelle Untersuchungen Über die Entwicklung der Sinnesorgane der Seitenlinie bei den Ampkibien , 1903 .

[28]  D. Raible,et al.  Organization of the lateral line system in embryonic zebrafish , 2000, The Journal of comparative neurology.

[29]  D. Raible,et al.  Neurogenin1 defines zebrafish cranial sensory ganglia precursors. , 2002, Developmental biology.

[30]  M. Tiveron,et al.  Role of Phox2b and Mash1 in the generation of the vestibular efferent nucleus. , 2003, Developmental biology.

[31]  A. Ghysen,et al.  Molecular basis of cell migration in the fish lateral line: Role of the chemokine receptor CXCR4 and of its ligand, SDF1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  L. Stone Further experimental studies of the development of lateral‐line sense organs in amphibians observed in living preparations , 1937 .

[33]  J. Y. Kuwada,et al.  Molecular cloning and developmental expression of a zebrafish axonal glycoprotein similar to TAG-1 , 1999, Mechanisms of Development.

[34]  Catherine A. McCormick,et al.  Central Lateral Line Mechanosensory Pathways in Bony Fish , 1989 .

[35]  T. Mcclanahan,et al.  Involvement of chemokine receptors in breast cancer metastasis , 2001, Nature.