Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber

Abstract This work experimentally demonstrates the supercontinuum (SC) generation in a three-hole arsenic free Ge 20 Sb 15 Se 65 chalcogenide suspended-core fiber. Mechanical drilling was used to prepare the chalcogenide glass preform, which was drawn into suspended-core fibers. The zero-dispersion wavelength of the fiber is moved toward the shorter wavelength of about 3.2 μm through changing the fiber core diameter by controlling the pressure of inert gas during fiber drawing. When a 15 cm-long fiber with a core diameter of 6 μm is pumped using 150 fs pulses at 3.3 μm, SC spanning from ∼3 μm to ∼8 μm was generated.

[1]  A. Willner,et al.  Octave-spanning supercontinuum generation of vortices in a As2S3 ring photonic crystal fiber , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[2]  Jasbinder S. Sanghera,et al.  All-fiber chalcogenide-based mid-infrared supercontinuum source , 2012 .

[3]  Takenobu Suzuki,et al.  Visible Light Generation and Its Influence on Supercontinuum in Chalcogenide As2S3 Microstructured Optical Fiber , 2011 .

[4]  F. Smektala,et al.  Optical aging behaviour naturally induced on As 2 S 3 microstructured optical fibres , 2014 .

[5]  F. Smektala,et al.  Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers. , 2012, Optics express.

[6]  Benjamin J Eggleton,et al.  Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. , 2008, Optics letters.

[7]  Xiang Shen,et al.  Fabrication of Ge-Se-Sb chalcogenide glass with large size and its MTF performance , 2009, Applied Optics and Photonics China.

[8]  Leslie Brandon Shaw,et al.  Non-linear properties of chalcogenide glasses and fibers , 2008 .

[9]  Ole Bang,et al.  Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths. , 2005, Optics express.

[10]  V. G. Plotnichenko,et al.  HIGH-PURITY GLASSES BASED ON ARSENIC CHALCOGENIDES , 2001 .

[11]  Guangming Tao,et al.  Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses. , 2012, Optics letters.

[12]  Yi Yu,et al.  Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. , 2015, Optics express.

[13]  Q. Nie,et al.  Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers , 2014 .

[14]  Stuart D. Jackson,et al.  Octave spanning supercontinuum in an As2S3 taper using ultra-low pump pulse energy , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[15]  Jacques Lucas,et al.  Chalcogenide glasses with large non-linear refractive indices , 1998 .

[16]  Alireza Marandi,et al.  Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm. , 2012, Optics express.

[17]  Xiang Shen,et al.  Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system. , 2015, Optics express.

[18]  P. Petropoulos,et al.  Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Yi Yu,et al.  1.8-10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. , 2015, Optics letters.

[20]  Jonathan Hu,et al.  Computational study of 3-5 microm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 microm. , 2010, Optics letters.

[21]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[22]  Tonglei Cheng,et al.  Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber. , 2016, Optics letters.

[23]  Hye-Jeong Kim,et al.  Fabrication of molded chalcogenide-glass lens for thermal imaging applications. , 2012, Applied optics.

[24]  D. Moss,et al.  Broadband low power super-continuum generation in As2S3 chalcogenide glass fiber nanotapers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[25]  Ke Yin,et al.  Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers. , 2016, Optics letters.

[26]  Shibin Jiang,et al.  Single-mode low-loss optical fibers for long-wave infrared transmission. , 2010, Optics letters.

[27]  Ishwar D. Aggarwal,et al.  IR Supercontinuum Generation in As-Se Photonic Crystal Fiber , 2005 .

[28]  Tonglei Cheng,et al.  Mid-infrared supercontinuum generation in an AsSe2-As2S5 hybrid microstructured optical fiber , 2014, 2014 5th International Conference on Optical Communication Systems (OPTICS).

[29]  Francesca Parmigiani,et al.  Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths , 2010 .

[30]  Takenobu Suzuki,et al.  Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers , 2011 .

[31]  L. Brilland,et al.  Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers. , 2010, Optics express.

[32]  F. Amrani,et al.  Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers. , 2014, Optics letters.

[33]  L. Brilland,et al.  Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources. , 2010, Optics express.

[34]  Jasbinder S. Sanghera,et al.  Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. , 2010, Optics express.

[35]  Vincent Couderc,et al.  Non-linear optical properties of chalcogenide glasses measured by Z-scan , 2000 .