Broadband sensitizers for erbium-doped planar optical amplifiers: review

Three different broadband sensitization concepts for optically active erbium ions are reviewed: 1) silicon nanocrystals, with absorption over the full visible spectrum, efficiently couple their excitonic energy to Er3+, 2) silver-related defect states in sodalime silicate glass have absorption in the blue and transfer energy to Er3+, and 3) organic cage complexes coordinated with well-chosen chromophores serve as broadband sensitizers in the visible. Energy transfer rates, efficiencies, and limiting factors are addressed for each of these sensitizers. Implications of the use of strong sensitizers for planar waveguide design are illustrated by using a model for the sensitizing effect of ytterbium.

[1]  Mk Meint Smit,et al.  Net optical gain at 1.53 mu m in Er-doped Al2O3 waveguides on silicon , 1996 .

[2]  F. V. van Veggel,et al.  Transition Metal Complexes as Photosensitizers for Near-Infrared Lanthanide Luminescence. , 2000, Angewandte Chemie.

[3]  Markus P. Hehlen,et al.  Spectroscopic properties of Er 3+ - and Yb 3+ -doped soda-lime silicate and aluminosilicate glasses , 1997 .

[4]  Albert Polman,et al.  Absorption and emission spectroscopy in Er3+–Yb3+ doped aluminum oxide waveguides , 2003 .

[5]  Byeong-Soo Bae,et al.  Indirect excitation of Er3+ in sol-gel hybrid films doped with an erbium complex , 2003 .

[6]  Morio Kobayashi,et al.  Amplification in erbium-doped silica-based planar lightwave circuits , 1992 .

[7]  Pieter G. Kik,et al.  Strong exciton-erbium coupling in Si nanocrystal-doped SiO2 , 2000 .

[8]  S. U. Campisano,et al.  Erbium in oxygen-doped silicon: Optical excitation , 1995 .

[9]  A. Meijerink,et al.  Luminescence of Ag+ in crystalline and glassy SrB4O7 , 1993 .

[10]  D. Reinhoudt,et al.  Lanthanide(III)-Doped Nanoparticles That Emit in the Near-Infrared , 2002 .

[11]  Keiichi Yamamoto,et al.  1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+ , 1997 .

[12]  A. Kenyon,et al.  Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films , 1999 .

[13]  Design and Performance of an Erbium-Doped Silicon Waveguide Detector Operating at 1 . 5 , 2001 .

[14]  J. Moser,et al.  Visible and Near-Infrared Luminescence of Lanthanide-Containing Dimetallic Triple-Stranded Helicates: Energy Transfer Mechanisms in the SmIII and YbIII Molecular Edifices , 2002 .

[15]  Salvatore Coffa,et al.  Excitation and nonradiative deexcitation processes of Er 3 + in crystalline Si , 1998 .

[16]  Namkyoo Park,et al.  Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier , 2002 .

[17]  Domenico Pacifici,et al.  Er3+ ions–Si nanocrystals interactions and their effects on the luminescence properties , 2000 .

[18]  D W Goodwin,et al.  Optical Spectra of Transparent Rare Earth Compounds , 1979 .

[19]  Salvatore Lombardo,et al.  Room‐temperature luminescence from Er‐implanted semi‐insulating polycrystalline silicon , 1993 .

[20]  M. J. Weber,et al.  Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y 2 O 3 , 1968 .

[21]  Domenico Pacifici,et al.  Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification , 2003 .

[22]  F. Cussó,et al.  Yb3+ to Er3+ energy transfer in LiNbO3 , 1998 .

[23]  Mk Meint Smit Integrated Optics in Silicon-based Aluminum Oxide , 1991 .

[24]  W. Miniscalco Erbium-doped glasses for fiber amplifiers at 1500 nm , 1991 .

[25]  M. Fujii,et al.  Photoluminescence from SiO2 films containing Si nanocrystals and Er: Effects of nanocrystalline size on the photoluminescence efficiency of Er3+ , 1998 .

[26]  A. Polman,et al.  Erbium–thulium interaction in broadband infrared luminescent silicon-rich silicon oxide , 2003 .

[27]  Se-Young Seo,et al.  Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide , 2001 .

[28]  Pieter G. Kik,et al.  Pumping planar waveguide amplifiers using a coupled waveguide system , 2001 .

[29]  Toshiaki Ikoma,et al.  Electrochemical Er doping of porous silicon and its room‐temperature luminescence at ∼1.54 μm , 1994 .

[30]  B. Judd,et al.  Optical Spectra of Transparent Rare Earth Compounds , 1978 .

[31]  Kazimierz Jędrzejewski,et al.  Yb3+ sensitised Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain , 1991 .

[32]  M. Smit,et al.  Absorption and emission cross sections of Er3+ in Al2O3 waveguides , 1997 .

[33]  C. Parent,et al.  Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3−AgPO3 system , 1992 .

[34]  M. Fujii,et al.  Photoluminescence from SiO 2 films containing Si nanocrystals and Er: Effects of nanocrystalline size on the photoluminescence efficiency of Er , 1998 .

[35]  M. Ward,et al.  Sensitised near-infrared emission from lanthanides using a covalently-attached Pt(II) fragment as an antenna group. , 2003, Chemical communications.

[36]  Franco Cacialli,et al.  Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex , 2001 .

[37]  R. Longo,et al.  Spectroscopic properties and design of highly luminescent lanthanide coordination complexes , 2000 .

[38]  R. S. Quimby,et al.  General procedure for the analysis of Er(3+) cross sections. , 1991, Optics letters.

[39]  F. V. Veggel,et al.  Visible and near-infrared light emitting calix[4]arene-based ternary lanthanide complexes , 2001 .

[40]  G. N. van den Hoven,et al.  Optical doping of soda‐lime‐silicate glass with erbium by ion implantation , 1993 .

[41]  J. Shmulovich,et al.  8-mV threshold Er/sup 3+/-doped planar waveguide amplifier , 1996, IEEE Photonics Technology Letters.

[42]  E. Sveshnikova,et al.  The application of luminescence-kinetic methods in the study of the formation of lanthanide ion complexes in solution , 1994 .

[43]  M. Salvi,et al.  Optical Activation of Er3+ Implanted in Silicon by Oxygen Impurities , 1990 .

[44]  R. C. Kistler,et al.  Optical doping of waveguide materials by MeV Er implantation , 1991 .

[45]  A. Polman,et al.  Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 /spl mu/m , 2002 .

[46]  J. W. Hofstraat,et al.  Sensitized near-infrared emission from Nd3+ and Er3+ complexes of fluorescein-bearing calix[4]arene cages , 1998 .

[47]  I. B. Berlman Handbook of flourescence spectra of aromatic molecules , 1971 .

[48]  Harry A. Atwater,et al.  Defect‐related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2 , 1996 .

[49]  F. Koch,et al.  Optical absorption cross sections of Si nanocrystals , 2000 .

[50]  J. W. Hofstraat,et al.  Concentration effects in the photodegradation of lissamine-functionalized neodymium complexes in polymer waveguides , 2001 .

[51]  L. Hornak Polymers for lightwave and integrated optics : technology and applications , 1992 .

[52]  Mk Meint Smit,et al.  Photoluminescence characterization of Er-implanted Al2O3 films , 1993 .

[53]  Pieter G. Kik,et al.  Erbium-Doped Optical-Waveguide Amplifiers on Silicon , 1998 .

[54]  D. C. Hanna,et al.  Efficient operation of an Yb-sensitised Er fibre laser at 1.56 mu m , 1988 .

[55]  G. N. van den Hoven,et al.  Direct experimental evidence for trap‐state mediated excitation of Er3+ in silicon , 1995 .

[56]  Mk Meint Smit,et al.  Upconversion in Er-implanted Al2O3 waveguides , 1996 .

[57]  Polman,et al.  Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si. , 1994, Physical review. B, Condensed matter.

[58]  Frank C. J. M. van Veggel,et al.  Lanthanide(III)-doped nanoparticles that emit in the near infrared , 2003, SPIE Optics + Photonics.

[59]  Pieter G. Kik,et al.  Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2 , 2002 .

[60]  J. A. Alvarez-Chavez,et al.  High-power and tunable operation of erbium-ytterbium Co-doped cladding-pumped fiber lasers , 2003 .

[61]  G. Franzò,et al.  The excitation mechanism of rare-earth ions in silicon nanocrystals , 1999 .

[62]  J. W. Hofstraat,et al.  Efficient visible light sensitisation of water-soluble near-infrared luminescent lanthanide complexes , 2000 .

[63]  Albert Polman,et al.  Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm , 1997 .

[64]  J. N. Sandoe,et al.  Variation of Nd3+ cross section for stimulated emission with glass composition , 1971 .

[65]  A. Polmana,et al.  APPLIED PHYSICS REVIEWS Erbium implanted thin film photonic materials , 1997 .

[66]  E. Desurvire,et al.  Erbium‐Doped Fiber Amplifiers: Principles and Applications , 1995 .

[67]  Y. Wada,et al.  Near-Infrared Photoluminescence and Electroluminescence of Neodymium(III), Erbium(III), and Ytterbium(III) Complexes , 2001 .

[68]  W. E. Henry Magnetic Moments and Apparent Molecular Fields in Some Rare Earth Metals and Compounds , 1958 .

[69]  F. V. Veggel,et al.  Synergistic complexation of Eu3+ by a polydentate ligand and a bidentate antenna to obtain ternary complexes with high luminescence quantum yields , 2002 .

[70]  H. Atwater,et al.  Size-dependent electron-hole exchange interaction in Si nanocrystals , 2000 .

[71]  D. Reinhoudt,et al.  A Systematic Study of the Photophysical Processes in Polydentate Triphenylene-Functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ Complexes , 2000 .

[72]  Pieter G. Kik,et al.  Exciton–erbium interactions in Si nanocrystal-doped SiO2 , 2000 .

[73]  Johannes W. Hofstraat,et al.  Optical properties of erbium-doped organic polydentate cage complexes , 1998 .

[74]  Johannes W. Hofstraat,et al.  Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III) and erbium(III) chelates , 1997 .

[75]  G. N. van den Hoven,et al.  Absorption and emission cross sections of Er(3+) in Al(2)O(3) waveguides. , 1997, Applied optics.

[76]  Pieter G. Kik Energy transfer in erbium doped optical waveguides based on silicon , 2000 .

[77]  W. Brocklesby,et al.  Ion-exchanged Er/Yb waveguide laser at 1.5 /spl mu/m pumped by laser diode , 1995 .

[78]  Pieter G. Kik,et al.  Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers , 2003 .

[79]  S. U. Campisano,et al.  Room-temperature luminescence in semi-insulating polycrystalline silicon implanted with Er , 1995 .

[80]  R. F. Pinizzotto,et al.  Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals , 1999 .

[81]  S. U. Campisano,et al.  Erbium in oxygen‐doped silicon: Electroluminescence , 1995 .

[82]  Christof Strohhöfer,et al.  Relationship between gain and Yb 3¿ concentration in Er 3¿ -Yb 3¿ doped waveguide amplifiers , 2001 .

[83]  D. Reinhoudt,et al.  Unexpected Sensitization Efficiency of the Near-Infrared Nd3+, Er3+, and Yb3+ Emission by Fluorescein Compared to Eosin and Erythrosin , 2003 .

[84]  J. W. Stouwdam,et al.  Near-infrared Emission of Redispersible Er 3 + , Nd 3 + , and Ho 3 + Doped LaF 3 Nanoparticles , 2022 .

[85]  Pieter G. Kik,et al.  Energy backtransfer and infrared photoresponse in erbium-doped silicon p–n diodes , 2000 .

[86]  A. Polman,et al.  Formation mechanism of silver nanocrystals made by ion irradiation of ion-exchanged sodalime silicate glass , 2000 .

[87]  Allan,et al.  Theoretical aspects of the luminescence of porous silicon. , 1993, Physical review. B, Condensed matter.

[88]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[89]  Ramu V. Ramaswamy,et al.  Ion-exchanged glass waveguides: a review , 1988 .

[90]  Jan Valenta,et al.  Photoluminescence spectroscopy of single silicon quantum dots , 2002 .

[91]  D. Mccumber,et al.  Einstein Relations Connecting Broadband Emission and Absorption Spectra , 1964 .

[92]  A. Polman,et al.  Silver as a sensitizer for erbium , 2002 .

[93]  F. V. van Veggel,et al.  Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[94]  Cesare Svelto,et al.  Widely tunable single‐frequency erbium–ytterbium phosphate glass laser , 1996 .

[95]  Joseph S. Hayden,et al.  Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass , 2000 .

[96]  J. W. Stouwdam,et al.  Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles , 2002 .

[97]  J. W. Hofstraat,et al.  Sensitized near-infrared luminescence from polydentate triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes , 1999 .