Persistent spectral graph

Persistent homology is constrained to purely topological persistence while multiscale graphs account only for geometric information. This work introduces persistent spectral theory to create a unified lowdimensional multiscale paradigm for revealing topological persistence and extracting geometric shapes from high-dimensional datasets. For a point-cloud dataset, a filtration procedure is used to generate a sequence of chain complexes and associated families of simplicial complexes and chains, from which we construct persistent combinatorial Laplacian matrices. We show that a full set of topological persistence can be completely recovered from the harmonic persistent spectra, i.e., the spectra that have zero eigenvalues, of the persistent combinatorial Laplacian matrices. However, non-harmonic spectra of the Laplacian matrices induced by the filtration offer another powerful tool for data analysis, modeling, and prediction. In this work, fullerenes stability is predicted by using both harmonic and non-harmonic persistent spectra. While non-harmonic persistent spectra are successfully devised to analyze the structure of fullerenes and model protein flexibility, which cannot be straightforwardly extracted from the current persistent homology. The proposed method is found to provide excellent predictions of the protein B-factors for which current popular biophysical models break down. This article is protected by copyright. All rights reserved.

[1]  K. Balasubramanian Applications of Combinatorics and Graph Theory to Spectroscopy and Quantum Chemistry , 1985 .

[2]  Daniel Hern'andez Serrano,et al.  Higher order degree in simplicial complexes, multi combinatorial Laplacian and applications of TDA to complex networks , 2019, ArXiv.

[3]  R. Ho Algebraic Topology , 2022 .

[4]  Robert J. MacG. Dawson Homology of weighted simplicial complexes , 1990 .

[5]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[6]  A. Atilgan,et al.  Vibrational Dynamics of Folded Proteins: Significance of Slow and Fast Motions in Relation to Function and Stability , 1998 .

[7]  Wang,et al.  Systematic study of structures and stabilities of fullerenes. , 1992, Physical review. B, Condensed matter.

[8]  R. Huddleston STRUCTURE , 2021, American Atrocity.

[9]  Daniel Hernández Serrano,et al.  Centrality measures in simplicial complexes: Applications of topological data analysis to network science , 2020, Appl. Math. Comput..

[10]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[11]  Konstantin Mischaikow,et al.  Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..

[12]  Xiaodong Zhang The Laplacian eigenvalues of graphs: a survey , 2011, 1111.2897.

[13]  Peter Bubenik,et al.  Categorification of Persistent Homology , 2012, Discret. Comput. Geom..

[14]  V. Sunder,et al.  The Laplacian spectrum of a graph , 1990 .

[15]  Keith R. Matthews,et al.  Elementary Linear Algebra , 1998 .

[16]  Milan Rajkovic,et al.  Consensus Formation on Simplicial Complex of Opinions , 2012, ArXiv.

[17]  F. Kamber,et al.  De Rham-Hodge theory for Riemannian foliations , 1987 .

[18]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[19]  Guo-Wei Wei,et al.  TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions , 2017, PLoS Comput. Biol..

[20]  A. Atilgan,et al.  Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. , 1997, Folding & design.

[21]  Che Ting Chan,et al.  The geometry of small fullerene cages: C20 to C70 , 1992 .

[22]  Weighted (Co)homology and Weighted Laplacian , 2018, 1804.06990.

[23]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[24]  Dmitriy Morozov,et al.  Zigzag persistent homology and real-valued functions , 2009, SCG '09.

[25]  Kelin Xia,et al.  Persistent homology analysis of protein structure, flexibility, and folding , 2014, International journal for numerical methods in biomedical engineering.

[26]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[27]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[28]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[29]  Tamal K. Dey,et al.  Computing Topological Persistence for Simplicial Maps , 2012, SoCG.

[30]  Yiying Tong,et al.  Persistent homology for the quantitative prediction of fullerene stability , 2014, J. Comput. Chem..

[31]  Zhijun Wu,et al.  Coarse Grained Normal Mode Analysis vs. Refined Gaussian Network Model for Protein Residue-Level Structural Fluctuations , 2013, Bulletin of mathematical biology.

[32]  Guo-Wei Wei,et al.  Blind prediction of protein B-factor and flexibility. , 2018, The Journal of chemical physics.

[33]  F. Chung Laplacians and the Cheeger Inequality for Directed Graphs , 2005 .

[34]  R. García-Domenech,et al.  Some new trends in chemical graph theory. , 2008, Chemical reviews.

[35]  Guo-Wei Wei,et al.  AGL-Score: Algebraic Graph Learning Score for Protein-Ligand Binding Scoring, Ranking, Docking, and Screening , 2019, J. Chem. Inf. Model..

[36]  Guo-Wei Wei,et al.  Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges , 2018, Journal of Computer-Aided Molecular Design.

[37]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[38]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[39]  Patrizio Frosini,et al.  Measuring shapes by size functions , 1992, Other Conferences.

[40]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[41]  L. Guibas,et al.  Topological methods for exploring low-density states in biomolecular folding pathways. , 2008, The Journal of chemical physics.

[42]  J. Jost,et al.  Spectra of combinatorial Laplace operators on simplicial complexes , 2011, 1105.2712.

[43]  R. Jernigan,et al.  Anisotropy of fluctuation dynamics of proteins with an elastic network model. , 2001, Biophysical journal.

[44]  Kelin Xia,et al.  Multiscale multiphysics and multidomain models--flexibility and rigidity. , 2013, The Journal of chemical physics.

[45]  Daniel Hern'andez Serrano,et al.  Centrality measures in simplicial complexes: applications of TDA to Network Science , 2019, 1908.02967.

[46]  Bryan L. Shader,et al.  On graphs with equal algebraic and vertex connectivity , 2002 .

[47]  Kelin Xia,et al.  Communication: Capturing protein multiscale thermal fluctuations. , 2015, The Journal of chemical physics.

[48]  J. V. Michalowicz,et al.  CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES , 2018 .

[49]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[50]  Guo-Wei Wei,et al.  Multiscale weighted colored graphs for protein flexibility and rigidity analysis. , 2018, The Journal of chemical physics.

[51]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[52]  Guo-Wei Wei,et al.  Multiscale Gaussian network model (mGNM) and multiscale anisotropic network model (mANM). , 2015, The Journal of chemical physics.

[53]  Kelin Xia,et al.  Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis. , 2014, The Journal of chemical physics.

[54]  H. Kroto,et al.  Structure , properties and applications of fullerenes , 2008 .

[55]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[56]  Stephen H. Friedberg,et al.  Elementary Linear Algebra , 2007 .

[57]  L. Verhoeven,et al.  Can one Hear the Shape of a Drum? , 2015 .

[58]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[59]  Andreas Uhl,et al.  Deep Learning with Topological Signatures , 2017, NIPS.