Neural network reactive force field for C, H, N, and O systems

[1]  E. Kober,et al.  Unsupervised Learning-Based Multiscale Model of Thermochemistry in 1,3,5-Trinitro-1,3,5-triazinane (RDX). , 2020, The journal of physical chemistry. A.

[2]  Alexander L. Shluger,et al.  Roadmap on multiscale materials modeling , 2020, Modelling and Simulation in Materials Science and Engineering.

[3]  E. Tadmor,et al.  Hybrid neural network potential for multilayer graphene , 2019, Physical Review B.

[4]  A. Strachan,et al.  Sensitivity of the Shock Initiation Threshold of 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) to Nuclear Quantum Effects , 2019, The Journal of Physical Chemistry C.

[5]  Peijin Liu,et al.  High density assembly of energetic molecules under the constraint of defected 2D materials , 2019, Journal of Materials Chemistry A.

[6]  A. Strachan,et al.  Reactive Molecular Dynamics Simulations to Investigate the Shock Response of Liquid Nitromethane , 2019, The Journal of Physical Chemistry C.

[7]  A. Strachan,et al.  Role of Molecular Disorder on the Reactivity of RDX , 2018, The Journal of Physical Chemistry C.

[8]  Turab Lookman,et al.  Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning , 2018, npj Computational Materials.

[9]  E Weinan,et al.  End-to-end Symmetry Preserving Inter-atomic Potential Energy Model for Finite and Extended Systems , 2018, NeurIPS.

[10]  Adrian E. Roitberg,et al.  Less is more: sampling chemical space with active learning , 2018, The Journal of chemical physics.

[11]  K-R Müller,et al.  SchNet - A deep learning architecture for molecules and materials. , 2017, The Journal of chemical physics.

[12]  M Gastegger,et al.  wACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials. , 2017, The Journal of chemical physics.

[13]  L. Fried,et al.  ChIMES: A Force Matched Potential with Explicit Three-Body Interactions for Molten Carbon. , 2017, Journal of chemical theory and computation.

[14]  Alejandro Strachan,et al.  Decomposition and Reaction of Polyvinyl Nitrate under Shock and Thermal Loading: A ReaxFF Reactive Molecular Dynamics Study , 2017 .

[15]  Gabor Csanyi,et al.  Achieving DFT accuracy with a machine-learning interatomic potential: thermomechanics and defects in bcc ferromagnetic iron , 2017, 1706.10229.

[16]  A. V. van Duin,et al.  Extension of the ReaxFF Combustion Force Field toward Syngas Combustion and Initial Oxidation Kinetics. , 2017, The journal of physical chemistry. A.

[17]  A. El-Sherif,et al.  Complete spectroscopic picture of concealed explosives: Laser induced Raman versus infrared , 2016 .

[18]  E. Kaxiras,et al.  eReaxFF: A Pseudoclassical Treatment of Explicit Electrons within Reactive Force Field Simulations. , 2016, Journal of chemical theory and computation.

[19]  T. Morawietz,et al.  How van der Waals interactions determine the unique properties of water , 2016, Proceedings of the National Academy of Sciences.

[20]  I. Bruno,et al.  The Cambridge Structural Database , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[21]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[22]  Nongnuch Artrith,et al.  An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2 , 2016 .

[23]  E. Kober,et al.  Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale , 2015 .

[24]  Lianhua Shen,et al.  Synthesis and properties of RDX/GAP nano-composite energetic materials , 2015, Colloid and Polymer Science.

[25]  Alejandro Strachan,et al.  Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. , 2015, Nature materials.

[26]  I. Schweigert Ab initio molecular dynamics of high-temperature unimolecular dissociation of gas-phase RDX and its dissociation products. , 2015, The journal of physical chemistry. A.

[27]  M. Robbins,et al.  AIREBO-M: a reactive model for hydrocarbons at extreme pressures. , 2015, The Journal of chemical physics.

[28]  Christian Trott,et al.  Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials , 2014, J. Comput. Phys..

[29]  A. Thompson,et al.  Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void , 2014 .

[30]  Alejandro Strachan,et al.  Coupled thermal and electromagnetic induced decomposition in the molecular explosive αHMX; a reactive molecular dynamics study. , 2014, The journal of physical chemistry. A.

[31]  A. V. Duin,et al.  Reactive Potentials for Advanced Atomistic Simulations , 2013 .

[32]  Anders M. N. Niklasson,et al.  Fast method for quantum mechanical molecular dynamics , 2012, 1203.6836.

[33]  Germany,et al.  Neural network interatomic potential for the phase change material GeTe , 2012, 1201.2026.

[34]  Nongnuch Artrith,et al.  High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide , 2011 .

[35]  Samuel P. Hernández-Rivera,et al.  Vibrational spectra and structure of RDX and its 13C- and 15N-labeled derivatives: a theoretical and experimental study. , 2010, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[36]  Thomas D. Kuhne,et al.  Ab initio quality neural-network potential for sodium , 2010, 1002.2879.

[37]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[38]  J. Behler,et al.  Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential. , 2008, Physical review letters.

[39]  A. V. van Duin,et al.  ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. , 2008, The journal of physical chemistry. A.

[40]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[41]  Susan B. Sinnott,et al.  Charge optimized many-body potential for the Si/SiO2 system , 2007 .

[42]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[43]  J. Dick,et al.  Resonant ultrasound spectroscopy measurement of the elastic constants of cyclotrimethylene trinitramine , 2005 .

[44]  A. V. van Duin,et al.  Thermal decomposition of RDX from reactive molecular dynamics. , 2005, The Journal of chemical physics.

[45]  Kaizar Amin,et al.  Introduction to Active Thermochemical Tables: Several “Key” Enthalpies of Formation Revisited† , 2004 .

[46]  A. V. van Duin,et al.  Shock waves in high-energy materials: the initial chemical events in nitramine RDX. , 2003, Physical review letters.

[47]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[48]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[49]  W. Goddard,et al.  The Mechanism for Unimolecular Decomposition of RDX (1,3,5-Trinitro-1,3,5-triazine), an ab Initio Study , 2000 .

[50]  J. Góis,et al.  Thermal decomposition of energetic materials , 1999 .

[51]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[52]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[53]  C. Yoo Equation of state of unreacted high explosives at high pressures , 1998 .

[54]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[55]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[56]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[57]  Craig M. Tarver,et al.  Critical conditions for impact- and shock-induced hot spots in solid explosives , 1996 .

[58]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[59]  P. Blöchl Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[60]  T. Brill,et al.  Thermal Decomposition of Energetic Materials. 66. Kinetic Compensation Effects in HMX, RDX, and NTO , 1994 .

[61]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[62]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[63]  A. Becke Density-functional thermochemistry. II: The effect of the Perdew-Wang generalized-gradient correlation correction , 1992 .

[64]  Axel D. Becke,et al.  Density-functional thermochemistry. I. The effect of the exchange-only gradient correction , 1992 .

[65]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[66]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[67]  Kent R. Wilson,et al.  Thermodynamics and quantum corrections from molecular dynamics for liquid water , 1982 .

[68]  D. Ornellas Calorimetric Determinations of the Heat and Products of Detonation for Explosives: October 1961 to April 1982 , 1982 .

[69]  R. N. Rogers,et al.  Application of scanning calorimetry to the study of chemical kinetics , 1970 .

[70]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[71]  Tzu-Ray Shan,et al.  Second-generation charge-optimized many-body potential for Si/SiO2 and amorphous silica , 2010 .

[72]  Russell D. Johnson,et al.  NIST Computational Chemistry Comparison and Benchmark Database , 2005 .

[73]  Sándor Suhai,et al.  A Self‐Consistent Charge Density‐Functional Based Tight‐Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology , 2000 .

[74]  Wang,et al.  Environment-dependent tight-binding potential model. , 1996, Physical review. B, Condensed matter.

[75]  R. Schoonheydt,et al.  Comparison of Cluster and Infinite Crystal Calculations on Zeolites with the Electronegativity Equalization Method (EEM) , 1995 .

[76]  C. Angell,et al.  Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation , 1992 .

[77]  Homer E. KlSSlNGER Reaction Kinetics in Differential Thermal Analysis , 1957 .