Stochastic Rate Parameter Inference Using the Cross-Entropy Method

We present a new, efficient algorithm for inferring, from time-series data or high-throughput data (e.g., flow cytometry), stochastic rate parameters for chemical reaction network models. Our algorithm combines the Gillespie stochastic simulation algorithm (including approximate variants such as tau-leaping) with the cross-entropy method. Also, it can work with incomplete datasets missing some model species, and with multiple datasets originating from experiment repetitions. We evaluate our algorithm on a number of challenging case studies, including bistable systems (Schlogl’s and toggle switch) and experimental data.

[1]  Edda Klipp,et al.  A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae , 2016, PLoS Comput. Biol..

[2]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[3]  D. Wilkinson Stochastic modelling for quantitative description of heterogeneous biological systems , 2009, Nature Reviews Genetics.

[4]  Mads Kærn,et al.  Noise in eukaryotic gene expression , 2003, Nature.

[5]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[6]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[7]  András Horváth,et al.  Parameter Estimation of Kinetic Rates in Stochastic Reaction Networks by the EM Method , 2008, 2008 International Conference on BioMedical Engineering and Informatics.

[8]  J Timmer,et al.  Parameter estimation in stochastic biochemical reactions. , 2006, Systems biology.

[9]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[10]  Fabian J Theis,et al.  Method of conditional moments (MCM) for the Chemical Master Equation , 2013, Journal of Mathematical Biology.

[11]  Dirk P. Kroese,et al.  Convergence properties of the cross-entropy method for discrete optimization , 2007, Oper. Res. Lett..

[12]  L. Poulsen,et al.  New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria , 1998, Applied and Environmental Microbiology.

[13]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[14]  M Leon,et al.  Computational design and characterisation of synthetic genetic switches , 2017 .

[15]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[16]  Stefan Engblom,et al.  Computing the moments of high dimensional solutions of the master equation , 2006, Appl. Math. Comput..

[17]  David A. Rand,et al.  Bayesian inference of biochemical kinetic parameters using the linear noise approximation , 2009, BMC Bioinformatics.

[18]  Darren J. Wilkinson,et al.  Bayesian inference for a discretely observed stochastic kinetic model , 2008, Stat. Comput..

[19]  Fabian J. Theis,et al.  Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion , 2016, PLoS Comput. Biol..

[20]  Xiaohui Xie,et al.  Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent , 2010, BMC Systems Biology.

[21]  Matthias Heinig,et al.  New Insights into the Genetic Control of Gene Expression using a Bayesian Multi-tissue Approach , 2010, PLoS Comput. Biol..

[22]  Junbin Gao,et al.  Simulated maximum likelihood method for estimating kinetic rates in gene expression , 2007, Bioinform..

[23]  Mustafa Khammash,et al.  Analysis of Stochastic Strategies in Bacterial Competence: A Master Equation Approach , 2010, PLoS Comput. Biol..

[24]  Verena Wolf,et al.  Approximate maximum likelihood estimation for stochastic chemical kinetics , 2012, EURASIP J. Bioinform. Syst. Biol..

[25]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[26]  Eberhard O Voit,et al.  The best models of metabolism , 2017, Wiley interdisciplinary reviews. Systems biology and medicine.

[27]  Radek Erban,et al.  Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks , 2015, Journal of The Royal Society Interface.

[28]  Reuven Y. Rubinstein,et al.  Optimization of computer simulation models with rare events , 1997 .

[29]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[30]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[31]  Linda R. Petzold,et al.  Accelerated maximum likelihood parameter estimation for stochastic biochemical systems , 2012, BMC Bioinformatics.

[32]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[33]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[34]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[35]  Christoph Zimmer,et al.  Parameter estimation for stochastic models of biochemical reactions , 2012 .

[36]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .

[37]  F. Schlögl Chemical reaction models for non-equilibrium phase transitions , 1972 .

[38]  Ursula Kummer,et al.  A new efficient approach to fit stochastic models on the basis of high-throughput experimental data using a model of IRF7 gene expression as case study , 2017, BMC Systems Biology.

[39]  Friedrich Schl gl Chemical Reaction Models for Non-Equilibrium Phase Transitions , 2005 .

[40]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[41]  Jason R. Pirone,et al.  Fluctuations in transcription factor binding can explain the graded and binary responses observed in inducible gene expression. , 2004, Journal of theoretical biology.

[42]  Bernie J Daigle,et al.  Automated estimation of rare event probabilities in biochemical systems. , 2011, The Journal of chemical physics.

[43]  Junli Liu,et al.  Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions , 2016, BMC Systems Biology.

[44]  Sven Sahle,et al.  Deterministic inference for stochastic systems using multiple shooting and a linear noise approximation for the transition probabilities , 2015, IET systems biology.

[45]  Julio R. Banga,et al.  Reverse engineering and identification in systems biology: strategies, perspectives and challenges , 2014, Journal of The Royal Society Interface.

[46]  Dirk P. Kroese,et al.  Cross‐Entropy Method , 2011 .