Recent advances in the electrochemical production of chemicals from methane

[1]  Jong Hyeok Park,et al.  Electrocatalytic methane oxidation on Co3O4- incorporated ZrO2 nanotube powder , 2021 .

[2]  Y. Shah Hybrid Energy Systems , 2021 .

[3]  R. Milo,et al.  Global human-made mass exceeds all living biomass , 2020, Nature.

[4]  G. Luderer,et al.  The CO2 reduction potential for the European industry via direct electrification of heat supply (power-to-heat) , 2020, Environmental Research Letters.

[5]  Ydna M. Questell-Santiago,et al.  Conversion of Methane into Liquid Fuels—Bridging Thermal Catalysis with Electrocatalysis , 2020, Advanced Energy Materials.

[6]  Julie C. Fornaciari,et al.  A Perspective on the Electrochemical Oxidation of Methane to Methanol in Membrane Electrode Assemblies , 2020, ACS Energy Letters.

[7]  M. G. Kibria,et al.  A review on electrocatalytic oxidation of methane to oxygenates , 2020 .

[8]  Z. Tang,et al.  Electrocatalytic oxidation of methane to ethanol via NiO/Ni interface , 2020 .

[9]  Hao Ming Chen,et al.  Ambient methane functionalization initiated by electrochemical oxidation of a vanadium (V)-oxo dimer , 2020, Nature Communications.

[10]  Yuhan Sun,et al.  Efficient methane electrocatalytic conversion over a Ni-based hollow fiber electrode , 2020, Chinese Journal of Catalysis.

[11]  Chusheng Chen,et al.  A Protonic Ceramic Electrochemical Cell for Efficient Separation of Hydrogen. , 2020, ACS applied materials & interfaces.

[12]  S. Bozorgmehri,et al.  An experimental design of the solid oxide fuel cell performance by using partially oxidation reforming of natural gas , 2020, Renewable Energy.

[13]  L. Torrente‐Murciano,et al.  Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape , 2020, Energy & Environmental Science.

[14]  A. Vourros,et al.  An Electrochemical Haber-Bosch Process , 2020 .

[15]  T. Jaramillo,et al.  Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold , 2020, Nature Communications.

[16]  J. Moon,et al.  Electrochemical CH4 oxidation into acids and ketones on ZrO2:NiCo2O4 quasi-solid solution nanowire catalyst , 2019 .

[17]  I. Chorkendorff,et al.  Electrified Methane Reforming: Understanding the Dynamic Interplay , 2019, Industrial & Engineering Chemistry Research.

[18]  Kangze Shen,et al.  Electrochemical Direct Partial Oxidation of Methane to Methanol , 2019, Joule.

[19]  A. Vourros,et al.  Electrochemical Synthesis of Ammonia: Recent Efforts and Future Outlook , 2019, Membranes.

[20]  Y. Surendranath,et al.  Electrochemical Reoxidation Enables Continuous Methane-to-Methanol Catalysis with Aqueous Pt Salts , 2019, ACS central science.

[21]  Tong Liu,et al.  A robust solid oxide electrolyzer for highly efficient electrochemical reforming of methane and steam , 2019, Journal of Materials Chemistry A.

[22]  Ib Chorkendorff,et al.  Electrified methane reforming: A compact approach to greener industrial hydrogen production , 2019, Science.

[23]  Xiuli Hu,et al.  Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer , 2019, Nature Communications.

[24]  N. Sullivan,et al.  Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production , 2019, Nature Energy.

[25]  Andrew J. Medford,et al.  Thermodynamic Limitations of the Catalyst Design Space for Methanol Production from Methane , 2018, ChemCatChem.

[26]  Valerie Vaissier Welborn,et al.  Computational optimization of electric fields for better catalysis design , 2018, Nature Catalysis.

[27]  David William Keith,et al.  A Process for Capturing CO2 from the Atmosphere , 2018, Joule.

[28]  J. Nørskov,et al.  Direct Methane to Methanol: The Selectivity–Conversion Limit and Design Strategies , 2018, ACS Catalysis.

[29]  Trieu Mai,et al.  An Electrified Future: Initial Scenarios and Future Research for U.S. Energy and Electricity Systems , 2018, IEEE Power and Energy Magazine.

[30]  K. Thygesen,et al.  Fundamental limitation of electrocatalytic methane conversion to methanol. , 2018, Physical chemistry chemical physics : PCCP.

[31]  J. Lemmon,et al.  Highly efficient electrochemical reforming of CH4/CO2 in a solid oxide electrolyser , 2018, Science Advances.

[32]  J. M. Serra,et al.  Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss , 2017 .

[33]  O. Guillon,et al.  Ion-Conducting Ceramic Membrane Reactors for High-Temperature Applications , 2017 .

[34]  Seokjoon Oh,et al.  Catalytic Methane Monofunctionalization by an Electrogenerated High-Valent Pd Intermediate , 2017, ACS central science.

[35]  Myung Sun Jung,et al.  Ultrahigh Electrocatalytic Conversion of Methane at Room Temperature , 2017, Advanced science.

[36]  Charlie Tsai,et al.  Mechanistic insights into heterogeneous methane activation. , 2017, Physical chemistry chemical physics : PCCP.

[37]  J. M. Serra,et al.  Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor , 2016, Science.

[38]  Sriram Raghavan,et al.  Integration of Sustainable Manufacturing Systems into Smart Grids with High Penetration of Renewable Energy Resources , 2016, 2016 IEEE Green Technologies Conference (GreenTech).

[39]  V. Viswanathan,et al.  Identifying Material and Device Targets for a Flare Gas Recovery System Utilizing Electrochemical Conversion of Methane to Methanol , 2016 .

[40]  William A. Rigdon,et al.  Two Pathways for Near Room Temperature Electrochemical Conversion of Methane to Methanol , 2015 .

[41]  Jessika E. Trancik,et al.  Climate impacts of energy technologies depend on emissions timing , 2014 .

[42]  Neil S. Spinner,et al.  Electrochemical Methane Activation and Conversion to Oxygenates at Room Temperature , 2013 .

[43]  R. Reis,et al.  Electrosynthesis of methanol from methane: The role of V2O5 in the reaction selectivity for methanol of a TiO2/RuO2/V2O5 gas diffusion electrode , 2013 .

[44]  X. D. Peng,et al.  Analysis of the Thermal Efficiency Limit of the Steam Methane Reforming Process , 2012 .

[45]  Zuwei Liao,et al.  Exergy analysis and CO2 emission evaluation for steam methane reforming , 2012 .

[46]  M. Appl Ammonia, 2. Production Processes , 2011 .

[47]  Takashi Hibino,et al.  Efficient and selective formation of methanol from methane in a fuel cell-type reactor , 2011 .

[48]  T. Hibino,et al.  Direct oxidation of methane to methanol at low temperature and pressure in an electrochemical fuel cell. , 2008, Angewandte Chemie.

[49]  Andrew E. Lutz,et al.  Exergy analysis of hydrogen production via steam methane reforming , 2007 .