Exploiting Antenna Motion for Faster Initialization of Centimeter-Accurate GNSS Positioning With Low-Cost Antennas

This paper investigates the effectiveness of multipath-decorrelating antenna motion in reducing the initialization time of global navigation satellite system (GNSS) receivers employing low-cost single-frequency antennas for carrier-phase differential GNSS (CDGNSS) positioning. Fast initialization times with low-cost antennas will encourage the expansion of CDGNSS into the mass market, bringing the benefits of globally referenced centimeter-accurate positioning to many consumer applications, such as augmented reality and autonomous vehicles, that have so far been hampered by the several-meter-level errors of traditional GNSS positioning. Poor multipath suppression common to low-cost antennas results in large and strongly time-correlated phase errors when a receiver is static. Such errors can result in the CDGNSS initialization time, the so-called time to ambiguity resolution (TAR), extending to hundreds of seconds—many times longer than for higher cost survey-grade antennas, which have substantially better multipath suppression. This paper demonstrates that TAR can be significantly reduced through antenna motion, particularly gentle wavelength-scale random antenna motion. Such motion acts to decrease the correlation time of the multipath-induced phase errors. A priori knowledge of the motion profile is shown to further reduce TAR, with the reduction shown to be more pronounced as the initialization scenario is more challenging.

[1]  Charles C. Counselman,et al.  Centimeter-Level Relative Positioning with GPS , 1983 .

[2]  Mark L. Psiaki,et al.  Kalman Filtering and Smoothing to Estimate Real-Valued States and Integer Constants , 2009 .

[3]  S.K. Kalyanaraman,et al.  Code tracking architecture influence on GPS carrier multipath , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Cetin Mekik,et al.  An investigation on multipath errors in real time kinematic GPS method , 2010 .

[6]  Valery U. Zavorotny,et al.  A Physical Model for GPS Multipath Caused by Land Reflections: Toward Bare Soil Moisture Retrievals , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  Lionel Garin,et al.  Enhanced Strobe Correlator Multipath Rejection for Code & Carrier , 1997 .

[8]  Stephen P. Boyd,et al.  Integer parameter estimation in linear models with applications to GPS , 1998, IEEE Trans. Signal Process..

[9]  Michael S. Braasch,et al.  Performance comparison of multipath mitigating receiver architectures , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[10]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[11]  Paul Cross,et al.  Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modelling , 2007 .

[12]  Sandra Verhagen,et al.  Robustness of GNSS integer ambiguity resolution in the presence of atmospheric biases , 2014, GPS Solutions.

[13]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[14]  Kyle O'Keefe,et al.  Time Correlation in GNSS Positioning over Short Baselines , 2012 .

[15]  Mark G. Petovello,et al.  Assessing Probability of Correct Ambiguity Resolution in the Presence of Time‐Correlated Errors , 2006 .

[16]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[17]  Thomas Pany,et al.  GNSS Synthetic Aperture Processing with Artificial Antenna Motion , 2013 .

[18]  Philip E. Gill,et al.  Practical optimization , 1981 .

[19]  J. K. Ray,et al.  Characterization of GPS Carrier Phase Multipath , 1999 .

[20]  Mark L. Psiaki,et al.  Modeling, Analysis, and Simulation of GPS Carrier Phase for Spacecraft Relative Navigation , 2005 .

[21]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[22]  David Crouse,et al.  Basic tracking using nonlinear continuous-time dynamic models [Tutorial] , 2015, IEEE Aerospace and Electronic Systems Magazine.

[23]  Michael S. Braasch,et al.  Mitigation of multipath in DGPS ground reference stations , 1992 .

[24]  Gérard Lachapelle,et al.  Spatial/Temporal Characterization of the GNSS Multipath Fading Channels , 2010 .

[25]  Peter Teunissen,et al.  The Lambda-method for Fast Gps Surveying , 1995 .

[26]  K. Kastella,et al.  Multiple model nonlinear filtering for low signal ground target applications , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[27]  S. Verhagen ON THE RELIABILITY OF INTEGER AMBIGUITY RESOLUTION , 2005 .

[28]  David Bétaille,et al.  Assessment and improvement of the capabilities of a window correlator to model GPS multipath phase errors , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[29]  Kenneth M. Pesyna Advanced techniques for centimeter-accurate GNSS positioning on low-cost mobile platforms , 2015 .

[30]  Kyle O'Keefe,et al.  Operational Performance of RTK Positioning when Accounting for the Time Correlated Nature of GNSS Phase Errors , 2010 .

[31]  Mark L. Psiaki,et al.  GNSS Multipath Mitigation using Antenna Motion , 2015 .

[32]  Robert W. Heath,et al.  Centimeter Positioning with a Smartphone-Quality GNSS Antenna , 2014 .

[33]  Pau Closas,et al.  A Bayesian Approach to Multipath Mitigation in GNSS Receivers , 2009, IEEE Journal of Selected Topics in Signal Processing.

[34]  S. Han Standardization of the variance-covariance matrix for GPS rapid static positioning , 1995 .

[35]  Dennis Odijk,et al.  Ambiguity Dilution of Precision: Definition, Properties and Application , 1997 .

[36]  Mark L. Psiaki,et al.  High-Altitude Satellite Relative Navigation Using Carrier-Phase Differential Global Positioning System Techniques , 2007 .

[37]  Robert W. Heath,et al.  A Phase-Reconstruction Technique for Low-Power Centimeter-Accurate Mobile Positioning , 2014, IEEE Transactions on Signal Processing.

[38]  G. Lachapelle,et al.  Consideration of time-correlated errors in a Kalman filter applicable to GNSS , 2009 .

[39]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[40]  Waldemar Kunysz,et al.  High Performance GPS Pinwheel Antenna , 2000 .

[41]  H. Al‐Rizzo,et al.  Analysis of a choke ring groundplane for multipath control in Global Positioning System (GPS) applications , 1994 .

[42]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[43]  Jan Skaloud,et al.  Reducing The GPS Ambiguity Search Space By Including Inertial Data , 1998 .

[44]  P. Teunissen Success probability of integer GPS ambiguity rounding and bootstrapping , 1998 .

[45]  Patrick C. Fenton,et al.  L1 Carrier Phase Multipath Error Reduction Using MEDLL Technology , 1995 .

[46]  Peter Teunissen,et al.  GPS Ambiguity Resolution: Impact of Time Correlation, Cross-Correlation and Satellite Elevation Dependence , 1997 .

[47]  R.D.J. van Nee,et al.  The multipath estimating delay lock loop: approaching theoretical accuracy limits , 1993, Proceedings of 1994 IEEE Position, Location and Navigation Symposium - PLANS'94.

[48]  Dennis Odijk,et al.  Sensitivity of Adop to Changes in the Single-Baseline GNSS Model , 2007 .

[49]  P. Axelrad,et al.  SNR-based multipath error correction for GPS differential phase , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[50]  Paul G. Blackwell,et al.  Ornstein–Uhlenbeck Process , 2005 .

[51]  Todd E. Humphreys,et al.  Exploiting Multicore Technology in Software-Defined GNSS Receivers , 2009 .

[52]  Mohamed Sahmoudi,et al.  Multipath mitigation techniques using maximum-likelihood principle , 2008 .

[53]  J. K. Ray,et al.  GPS code and carrier multipath mitigation using a multiantenna system , 2001 .