Spatial filtering in optics

Starting with the formulation of H. H. Hopkins for the image forming properties of an optical system in terms of a coherence factor over the object plane, the two extreme cases of complete coherence and incoherence are considered. The incoherent case is treated briefly as a low-pass spatial frequency filter. In the case of coherent illumination, it is shown that the optical analog of such well-known electrical concepts as equalization [17], edge-sharpening, and the detection of periodic and isolated signals in the presence of noise can be carried out with relative ease. A detailed theoretical treatment of the problem together with illustrations emphasizes the analogy between optical and electrical filtering.

[1]  Albert B. Porter,et al.  XII. On the diffraction theory of microscopic vision , 1906 .

[2]  J. Ernest Wilkins,et al.  The Resolving Power of a Coated Objective , 1949 .

[3]  H. H. Hopkins,et al.  The concept of partial coherence in optics , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  J. E. Rhodes,et al.  Microscope Imagery as Carrier Communication , 1953 .

[5]  Stanford Goldman,et al.  Information theory , 1953 .

[6]  E. H. Linfoot,et al.  On the assessment of optical images , 1955, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[7]  P. Elias,et al.  Fourier Treatment of Optical Processes , 1952 .

[8]  L. S. G. Kovasznay,et al.  Image Processing , 1955, Proceedings of the IRE.

[9]  Edward L. O’Neill Transfer Function for an Annular Aperture , 1956 .

[10]  Peter Elias Optics and Communication Theory , 1953 .

[11]  J. Elmer Rhodes Analysis and Synthesis of Optical Images , 1953 .

[12]  P. M. Duffieux L'intégrale de Fourier et ses applications à l'optique , 1946 .

[13]  H. Hopkins On the diffraction theory of optical images , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  R. K. Luneburg,et al.  Mathematical Theory of Optics , 1966 .