Phase Control in the Mass-Spring Model with nonsmooth stiffness and External excitation
暂无分享,去创建一个
[1] Miguel A. F. Sanjuán,et al. Energy dissipation in a nonlinearly damped Duffing oscillator , 2001 .
[2] F. Arecchi,et al. Numerical and experimental exploration of phase control of chaos. , 2006, Chaos.
[3] J. Sprott. Chaos and time-series analysis , 2001 .
[4] Lima,et al. Suppression of chaos by resonant parametric perturbations. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[5] Qu,et al. Phase effect in taming nonautonomous chaos by weak harmonic perturbations. , 1995, Physical review letters.
[6] Reimund Neugebauer,et al. Nonlinear Dynamics of Production Systems: RADONS:NONLIN.DYN.PROD.SY O-BK , 2005 .
[7] Bernold Fiedler,et al. Ergodic theory, analysis, and efficient simulation of dynamical systems , 2001 .
[8] Meucci,et al. Experimental control of chaos by means of weak parametric perturbations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[9] J. Miller. Numerical Analysis , 1966, Nature.
[10] Miguel A F Sanjuán,et al. Controlling chaotic transients: Yorke's game of survival. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] Stefano Euzzor,et al. Phase control of excitable systems , 2008 .
[12] M. Sanjuán,et al. Unpredictable behavior in the Duffing oscillator: Wada basins , 2002 .
[13] Miguel A. F. Sanjuán,et al. Nonlinear dynamics of the Helmholtz Oscillator , 2004 .
[14] P. Holmes,et al. A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[15] Grzegorz Litak,et al. Suppression of chaos by weak resonant excitations in a non-linear oscillator with a non-symmetric potential , 2004 .
[16] G. Duffing,et al. Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung , 1918 .
[17] J. Douglas Faires,et al. Numerical Analysis , 1981 .
[18] M. Kunze,et al. Non-Smooth Dynamical Systems: An Overview , 2001 .
[19] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[20] Utz von Wagner. On non-linear stochastic dynamics of quarter car models , 2004 .
[21] James A. Yorke,et al. Dynamics: Numerical Explorations , 1994 .
[22] Grzegorz Litak,et al. Nonlinear Response of the Mass-Spring Model with nonsmooth Stiffness , 2012, Int. J. Bifurc. Chaos.
[23] Li,et al. Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential. , 1985, Physical review letters.
[24] Edward Ott,et al. Controlling chaos , 2006, Scholarpedia.
[25] Hamel. Georg Duffing, Ingenieur: Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. Sammlung Vieweg. Heft 41/42, Braunschweig 1918. VI+134 S , 1921 .
[26] Phase control of intermittency in dynamical systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[27] G. Verros,et al. Control and Dynamics of Quarter-Car Models With Dual-Rate Damping , 2000 .
[28] Tomasz Kapitaniak,et al. Preserving transient chaos , 1998 .
[29] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[30] Stefano Euzzor,et al. Avoiding escapes in open dynamical systems using phase control. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[31] Ying-Cheng Lai,et al. Controlling chaos , 1994 .
[32] Ekaterina Pavlovskaia,et al. Low-dimensional maps for piecewise smooth oscillators , 2007 .
[33] Grzegorz Litak,et al. Chaotic Vibration of a Quarter-Car Model Excited by the Road Surface Profile , 2006, nlin/0601030.