Phase Control in the Mass-Spring Model with nonsmooth stiffness and External excitation

The control of chaotic dynamics in a nonlinear mass-spring model with nonsmooth stiffness is analyzed here. This is carried out by applying the phase control technique, which uses a periodic perturbation of a suitable phase ϕ. For this purpose, we take as prototype model a system consisting of a double-well potential with an additional spring component, which acts into the system only for large enough displacements. The crucial role of the phase is evidenced by using numerical simulations and also by using analytical methods, such as the Melnikov analysis. We expect that our results might be fruitful with implications in some mechanical problems such as suspension of vehicles, among others, where similar models are extensively used.

[1]  Miguel A. F. Sanjuán,et al.  Energy dissipation in a nonlinearly damped Duffing oscillator , 2001 .

[2]  F. Arecchi,et al.  Numerical and experimental exploration of phase control of chaos. , 2006, Chaos.

[3]  J. Sprott Chaos and time-series analysis , 2001 .

[4]  Lima,et al.  Suppression of chaos by resonant parametric perturbations. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[5]  Qu,et al.  Phase effect in taming nonautonomous chaos by weak harmonic perturbations. , 1995, Physical review letters.

[6]  Reimund Neugebauer,et al.  Nonlinear Dynamics of Production Systems: RADONS:NONLIN.DYN.PROD.SY O-BK , 2005 .

[7]  Bernold Fiedler,et al.  Ergodic theory, analysis, and efficient simulation of dynamical systems , 2001 .

[8]  Meucci,et al.  Experimental control of chaos by means of weak parametric perturbations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  J. Miller Numerical Analysis , 1966, Nature.

[10]  Miguel A F Sanjuán,et al.  Controlling chaotic transients: Yorke's game of survival. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Stefano Euzzor,et al.  Phase control of excitable systems , 2008 .

[12]  M. Sanjuán,et al.  Unpredictable behavior in the Duffing oscillator: Wada basins , 2002 .

[13]  Miguel A. F. Sanjuán,et al.  Nonlinear dynamics of the Helmholtz Oscillator , 2004 .

[14]  P. Holmes,et al.  A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[15]  Grzegorz Litak,et al.  Suppression of chaos by weak resonant excitations in a non-linear oscillator with a non-symmetric potential , 2004 .

[16]  G. Duffing,et al.  Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung , 1918 .

[17]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[18]  M. Kunze,et al.  Non-Smooth Dynamical Systems: An Overview , 2001 .

[19]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[20]  Utz von Wagner On non-linear stochastic dynamics of quarter car models , 2004 .

[21]  James A. Yorke,et al.  Dynamics: Numerical Explorations , 1994 .

[22]  Grzegorz Litak,et al.  Nonlinear Response of the Mass-Spring Model with nonsmooth Stiffness , 2012, Int. J. Bifurc. Chaos.

[23]  Li,et al.  Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential. , 1985, Physical review letters.

[24]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[25]  Hamel Georg Duffing, Ingenieur: Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. Sammlung Vieweg. Heft 41/42, Braunschweig 1918. VI+134 S , 1921 .

[26]  Phase control of intermittency in dynamical systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  G. Verros,et al.  Control and Dynamics of Quarter-Car Models With Dual-Rate Damping , 2000 .

[28]  Tomasz Kapitaniak,et al.  Preserving transient chaos , 1998 .

[29]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[30]  Stefano Euzzor,et al.  Avoiding escapes in open dynamical systems using phase control. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[32]  Ekaterina Pavlovskaia,et al.  Low-dimensional maps for piecewise smooth oscillators , 2007 .

[33]  Grzegorz Litak,et al.  Chaotic Vibration of a Quarter-Car Model Excited by the Road Surface Profile , 2006, nlin/0601030.