Contractivity of Runge-Kutta methods

In this paper we present necessary and sufficient conditions for Runge-Kutta methods to be contractive. We consider not only unconditional contractivity for arbitrary dissipative initial value problems, but also conditional contractivity for initial value problems where the right hand side function satisfies a circle condition. Our results are relevant for arbitrary norms, in particular for the maximum norm.For contractive methods, we also focus on the question whether there exists a unique solution to the algebraic equations in each step. Further we show that contractive methods have a limited order of accuracy. Various optimal methods are presented, mainly of explicit type. We provide a numerical illustration to our theoretical results by applying the method of lines to a parabolic and a hyperbolic partial differential equation.

[1]  F. John Partial differential equations , 1967 .

[2]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[3]  P. Hartman Ordinary Differential Equations , 1965 .

[4]  S. Schönbeck On the extension of Lipschitz maps , 1967 .

[5]  H. Stetter Analysis of Discretization Methods for Ordinary Differential Equations , 1973 .

[6]  S. Scholz,et al.  H. J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations. (Springer Tracts in Natural Philosophy. Ed. Coleman, B. D., Band 23). XVI + 388 S. m. 12 Fig. Berlin/Heidelberg/New York 1973. Springer‐Verlag. Preis geb. DM 120,— , 1975 .

[7]  Robert H. Martin,et al.  Nonlinear operators and differential equations in Banach spaces , 1976 .

[8]  C. Bolley,et al.  Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques , 1978 .

[9]  Werner Liniger,et al.  Contractive methods for stiff differential equations Part II , 1978 .

[10]  K. Burrage,et al.  Stability Criteria for Implicit Runge–Kutta Methods , 1979 .

[11]  M. Crouzeix Sur laB-stabilité des méthodes de Runge-Kutta , 1979 .

[12]  R. Jeltsch,et al.  Generalized disks of contractivity for explicit and implicit Runge-Kutta methods , 1979 .

[13]  M. N. Spijker,et al.  A note onB-stability of Runge-Kutta methods , 1980 .

[14]  Ernst Hairer,et al.  Highest possible order of algebraically stable diagonally implicit runge-kutta methods , 1980 .

[15]  Christoph W. Ueberhuber,et al.  The Concept of B-Convergence , 1981 .

[16]  Reiner Vanselow,et al.  Nonlinear stability behaviour of linear multistep methods , 1983 .

[17]  M. N. Spijker Contractivity in the numerical solution of initial value problems , 1983 .

[18]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[19]  M. N. Spijker,et al.  On the algebraic equations in implicit Runge-Kutta methods , 1987 .

[20]  F. R. Gantmakher The Theory of Matrices , 1984 .

[21]  M. N. Spijker On the relation between stability and contractivity , 1984 .

[22]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[23]  Extending monotone and non-expansive mappings by optimization. , 1985 .

[24]  Christoph W. Ueberhuber,et al.  Stability Properties of Implicit Runge–Kutta Methods , 1985 .

[25]  M. N. Spijker Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems , 1985 .

[26]  J. Kraaijevanger,et al.  Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems , 1986 .

[27]  J. Butcher The Numerical Analysis of Ordinary Di erential Equa-tions , 1986 .

[28]  Jörgen Sand Circle contractive linear multistep methods , 1986 .

[29]  J. Kraaijevanger,et al.  Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems , 1986 .

[30]  M. N. Spijker,et al.  Stepsize restrictions for stability in the numerical solution of ordinary and partial differential equations , 1987 .

[31]  Christoph W. Ueberhuber,et al.  B-convergence: a survey , 1989 .

[32]  M. N. Spijker,et al.  Algebraic stability and error propagation in Runge-Kutta methods , 1989 .

[33]  Choices in contractivity , 1989 .

[34]  H. Lenferink,et al.  Contractivity preserving explicit linear multistep methods , 1989 .

[35]  H. Lenferink Contractivity-preserving implicit linear multistep methods , 1991 .