Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators

A highly versatile soft gripper that can handle an unprecedented range of object types is developed based on a new design of dielectric elastomer actuators employing an interdigitated electrode geometry, simultaneously maximizing both electroadhesion and electrostatic actuation while incorporating self-sensing. The multifunctionality of the actuator leads to a highly integrated, lightweight, fast, soft gripper with simplified structure and control.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  H. A. Pohl,et al.  Some Effects of Nonuniform Fields on Dielectrics , 1958 .

[3]  A. D. Moore Electrostatics and its applications , 1973 .

[4]  M. S. Konstantinov 4th International symposium on industrial robots , 1975 .

[5]  P. M. Taylor,et al.  PRINCIPLES OF ELECTROADHESION IN CLOTHING ROBOTICS , 1989 .

[6]  一 浅間 5th International Conference on Advanced Robotics , 1991 .

[7]  泰義 横小路,et al.  IEEE International Conference on Robotics and Automation , 1992 .

[8]  Gareth J. Monkman,et al.  Compliant robotic devices, and electroadhesion , 1992, Robotica.

[9]  權寧住,et al.  Mechatronics , 2019, CIRP Encyclopedia of Production Engineering.

[10]  K. Yatsuzuka,et al.  Fundamental characteristics of electrostatic wafer chuck with insulating sealant , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[11]  R. Pelrine,et al.  Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation , 1998 .

[12]  Steven G. Wax,et al.  Electroactive polymer actuators and devices , 1999, Smart Structures.

[13]  George A. Bekey,et al.  Intelligent Learning for Deformable Object Manipulation , 1999, Auton. Robots.

[14]  Antonio Bicchi,et al.  Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity , 2000, IEEE Trans. Robotics Autom..

[15]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[16]  Y. Bar-Cohen Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD) , 2006 .

[17]  Heinz Wörn,et al.  Robot Manipulation of Deformable Objects: Advanced Manufacturing , 2000 .

[18]  K. Autumn,et al.  Mechanisms of Adhesion in Geckos1 , 2002, Integrative and comparative biology.

[19]  Daniel Palanker,et al.  Attracting retinal cells to electrodes for high-resolution stimulation , 2004, SPIE BiOS.

[20]  Kishore Sundara-Rajan,et al.  Interdigital sensors and transducers , 2004, Proceedings of the IEEE.

[21]  Name Lastname Sample for the IEEE International Symposium on Assembly and Task Planning , 2004 .

[22]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[23]  Rolf Pfeifer,et al.  How the body shapes the way we think - a new view on intelligence , 2006 .

[24]  S. Bauer,et al.  Energy minimization for self-organized structure formation and actuation , 2007 .

[25]  Wan Kyun Chung,et al.  Unscented FastSLAM: A Robust and Efficient Solution to the SLAM Problem , 2008, IEEE Transactions on Robotics.

[26]  Mark R. Cutkosky,et al.  Smooth Vertical Surface Climbing With Directional Adhesion , 2008, IEEE Transactions on Robotics.

[27]  M. Sitti,et al.  Gecko-inspired directional and controllable adhesion. , 2008, Small.

[28]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[29]  Aaron Parness,et al.  A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime , 2009, Journal of The Royal Society Interface.

[30]  Jeffrey C. Trinkle,et al.  Robotics: Science and Systems , 2010, AI Mag..

[31]  Heinrich M. Jaeger,et al.  Universal robotic gripper based on the jamming of granular material , 2010, Proceedings of the National Academy of Sciences.

[32]  Huai-Ti Lin,et al.  GoQBot: a caterpillar-inspired soft-bodied rolling robot , 2011, Bioinspiration & biomimetics.

[33]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[34]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[35]  Ana-Maria Cretu,et al.  Soft Object Deformation Monitoring and Learning for Model-Based Robotic Hand Manipulation , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[36]  Dario Floreano,et al.  Active Connection Mechanism for Soft Modular Robots , 2012, Adv. Robotics.

[37]  Todd A. Gisby,et al.  Multi-functional dielectric elastomer artificial muscles for soft and smart machines , 2012 .

[38]  Giuseppe Carbone,et al.  Grasping in Robotics , 2012 .

[39]  Lina,et al.  Fuzzy-Appearance Manifold and Fuzzy-Nearest Distance Calculation for Model-Less 3D Pose Estimation of Degraded Face Images , 2013 .

[40]  H. Shea,et al.  Flexible and stretchable electrodes for dielectric elastomer actuators , 2012, Applied Physics A.

[41]  Shahaboddin Shamshirband,et al.  Development of a new type of passively adaptive compliant gripper , 2013, Ind. Robot.

[42]  Lingzhi Liu,et al.  Networked Haptic Interaction to Implement “Hand in Hand” Human Motor Skill Training for Tank Gunnery , 2013 .

[43]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[44]  Brian K. Thorn,et al.  ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference , 2013 .

[45]  Todd A. Gisby,et al.  Self sensing feedback for dielectric elastomer actuators , 2013 .

[46]  Metin Sitti,et al.  Soft Grippers Using Micro‐fibrillar Adhesives for Transfer Printing , 2014, Advanced materials.

[47]  C. Keplinger,et al.  25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters , 2013, Advanced materials.

[48]  Donald Ruffatto,et al.  Increasing the adhesion force of electrostatic adhesives using optimized electrode geometry and a novel manufacturing process , 2014 .

[49]  José Antonio Cruz-Ledesma,et al.  Modelling, Design and Robust Control of a Remotely Operated Underwater Vehicle , 2014 .

[50]  Chuang Liu,et al.  IEEE International Conference on Robotics and Biomimetics , 2014 .

[51]  Alexander Verl,et al.  Grasping devices and methods in automated production processes , 2014 .

[52]  M. C. Tracey,et al.  Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering , 2014 .

[53]  F. Carpi,et al.  Ultrafast all-polymer electrically tuneable silicone lenses , 2016 .

[54]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[55]  Mark R. Cutkosky,et al.  Surface and Shape Deposition Manufacturing for the Fabrication of a Curved Surface Gripper , 2015 .

[56]  Dario Floreano,et al.  DEA for soft robotics: 1-gram actuator picks up a 60-gram egg , 2015, Smart Structures.

[57]  Samuel Rosset,et al.  Towards fast, reliable, and manufacturable DEAs: miniaturized motor and Rupert the rolling robot , 2015, Smart Structures.

[58]  Robert J. Wood,et al.  Science, technology and the future of small autonomous drones , 2015, Nature.

[59]  F. Jung,et al.  Products , 1968, ADHESION ADHESIVES&SEALANTS.

[60]  K. Bertoldi,et al.  Dielectric Elastomer Based “Grippers” for Soft Robotics , 2015, Advanced materials.

[61]  I. Gavrilovich,et al.  Rollable Multisegment Dielectric Elastomer Minimum Energy Structures for a Deployable Microsatellite Gripper , 2015, IEEE/ASME Transactions on Mechatronics.

[62]  Yan-Bin Jia,et al.  Picking up a soft 3D object by “feeling” the grip , 2015, Int. J. Robotics Res..

[63]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.