On practical integration of semi-discretized nonlinear equations of motion. Part 1: reasons for probable instability and improper convergence

[1]  Aram Soroushian,et al.  More reliable responses for time integration analyses , 2003 .

[2]  E. Amezua,et al.  Analysis of the components of discretization error in non-linear structural problems , 2003 .

[3]  S. Kim,et al.  An Explicit Discontinuous Time Integration Method For Dynamic-Contact/Impact Problems , 2002 .

[4]  P. Wriggers,et al.  Computational Contact Mechanics , 2002 .

[5]  Oreste S. Bursi,et al.  The analysis of the Generalized-α method for non-linear dynamic problems , 2002 .

[6]  Peter Betsch,et al.  Conservation properties of a time FE method—part II: Time‐stepping schemes for non‐linear elastodynamics , 2001 .

[7]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[8]  M. Crisfield,et al.  Energy‐conserving and decaying Algorithms in non‐linear structural dynamics , 1999 .

[9]  M. A. Crisfield,et al.  Some aspects of the non-linear finite element method , 1997 .

[10]  M. Ala Saadeghvaziri,et al.  Seismic modeling of multi-span simply-supported bridges using ADINA , 1997 .

[11]  Naser Mostaghel,et al.  REPRESENTATIONS OF COULOMB FRICTION FOR DYNAMIC ANALYSIS , 1997 .

[12]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[13]  Jintai Chung,et al.  Explicit time integration algorithms for structural dynamics with optimal numerical dissipation , 1996 .

[14]  Yi Min Xie,et al.  AN ASSESSMENT OF TIME INTEGRATION SCHEMES FOR NON-LINEAR DYNAMIC EQUATIONS , 1996 .

[15]  O. Bauchau,et al.  Numerical integration of non‐linear elastic multi‐body systems , 1995 .

[16]  Jintai Chung,et al.  A new family of explicit time integration methods for linear and non‐linear structural dynamics , 1994 .

[17]  Grant P. Steven,et al.  Instability, chaos, and growth and decay of energy of time‐stepping schemes for non‐linear dynamic equations , 1994 .

[18]  A. R. Robinson,et al.  Improved Time‐History Analysis for Structural Dynamics. I: Treatment of Rapid Variation of Excitation and Material Nonlinearity , 1993 .

[19]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[20]  Kumar K. Tamma,et al.  Virtual-pulse time integral methodology, a new approach for computational dynamics: Part 1 - Theory for linear structural dynamics , 1992 .

[21]  Dionisio Bernal,et al.  Locating Events in Step-by-Step Integration of the Equations of Motion , 1991 .

[22]  G. B. Warburton,et al.  Formulae for errors for initial displacement and velocity problems using the Newmark method , 1989 .

[23]  P. Reinhall,et al.  Order and Chaos in a Discrete Duffing Oscillator: Implications on Numerical Integration , 1989 .

[24]  T. Caughey,et al.  Order and chaos in a discrete Duffing oscillator , 1989 .

[25]  P. J. Pahl,et al.  Development of an implicit method with numerical dissipation from a generalized ingle-step algorithm for structural dynamics , 1988 .

[26]  W. L. Wood,et al.  Stability properties of some algorithms for the solution of nonlinear dynamic vibration equations , 1988 .

[27]  H. Kardestuncer,et al.  Finite element handbook , 1987 .

[28]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[29]  W. L. Wood,et al.  Comparison of some single‐step methods for the numerical solution of the structural dynamic equation , 1985 .

[30]  James M. Nau,et al.  Computation of Inelastic Response Spectra , 1983 .

[31]  G. Bazzi,et al.  The ρ‐family of algorithms for time‐step integration with improved numerical dissipation , 1982 .

[32]  Klaus-Jürgen Bathe,et al.  Some practical procedures for the solution of nonlinear finite element equations , 1980 .

[33]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[34]  Thomas J. R. Hughes,et al.  Stability, convergence and growth and decay of energy of the average acceleration method in nonlinear structural dynamics , 1976 .

[35]  Ted Belytschko,et al.  On the Unconditional Stability of an Implicit Algorithm for Nonlinear Structural Dynamics , 1975 .

[36]  R. Clough,et al.  Dynamics Of Structures , 1975 .

[37]  K. Park An Improved Stiffly Stable Method for Direct Integration of Nonlinear Structural Dynamic Equations , 1975 .

[38]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[39]  P. Henrici Discrete Variable Methods in Ordinary Differential Equations , 1962 .

[40]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[41]  John C. Houbolt,et al.  A Recurrence Matrix Solution for the Dynamic Response of Elastic Aircraft , 1950 .

[42]  Anil K. Chopra,et al.  Dynamics of Structures: Theory and Applications to Earthquake Engineering , 1995 .

[43]  Olivier A. Bauchau,et al.  Numerical Integration of Nonlinear Elastic Multibody Systems , 1995 .

[44]  W. L. Wood Practical Time-Stepping Schemes , 1990 .

[45]  Thomas J. R. Hughes,et al.  Implicit-explicit finite elements in nonlinear transient analysis , 1979 .

[46]  K. Bathe,et al.  Stability and accuracy analysis of direct integration methods , 1972 .

[47]  Marilyn Bohl,et al.  Information processing , 1971 .

[48]  B. Noble Applied Linear Algebra , 1969 .

[49]  C. W. Gear,et al.  The automatic integration of stiff ordinary differential equations , 1968, IFIP Congress.

[50]  A. Ralston A first course in numerical analysis , 1965 .

[51]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .