Thermo-mechanical design of honeycomb panel with fully-potted inserts used for spacecraft design
暂无分享,去创建一个
A. Boudjemai | R. Hocine | M. H. Bouanane | A. Mankour | H. Salem | R. Amri | A. Boudjemai | H. Salem | R. Amri | R. Hocine | A Mankour | M. Bouanane
[1] A. Boudjemai,et al. Modal analysis and testing of hexagonal honeycomb plates used for satellite structural design , 2012 .
[2] K. N. Seetharamu,et al. Fundamentals of the Finite Element Method for Heat and Fluid Flow , 2004 .
[3] E. Hinton,et al. A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations , 1998 .
[4] H. K. Cho,et al. Vibration in a satellite structure with a laminate composite hybrid sandwich panel , 2011 .
[5] Jean-François Ferrero,et al. Analyse d'inserts pour les structures sandwich composites , 2000 .
[6] Ole Thybo Thomsen,et al. Analysis and design of sandwich plates with inserts : a high-order sandwich plate theory approach , 1998 .
[7] T. Lu,et al. Heat transfer efficiency of metal honeycombs , 1999 .
[8] Ole Thybo Thomsen,et al. Sandwich Plates with “Through-the-Thickness” and “Fully Potted” Inserts , 1998 .
[9] Ahmed K. Noor,et al. Computational Models for Sandwich Panels and Shells , 1996 .
[10] Jaroslav Mackerle,et al. Finite element analyses of sandwich structures: a bibliography (1980–2001) , 2002 .
[11] Norman A. Fleck,et al. Fabrication and structural performance of periodic cellular metal sandwich structures , 2003 .
[12] Xia Li,et al. Equivalent Analysis of Honeycomb Sandwich Plates for Satellite Structure , 2003 .
[13] Qing Li,et al. A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials , 2010 .
[14] Jeom Kee Paik,et al. The strength characteristics of aluminum honeycomb sandwich panels , 1999 .
[15] Gabriel Bianchi,et al. Structural performance of spacecraft honeycomb panels , 2011 .
[16] David G. Gilmore,et al. Spacecraft Thermal Control Handbook, Volume I: Fundamental Technologies , 2002 .
[17] Mark Battley,et al. Strength Variability of Inserts in Sandwich Panels , 2009 .
[18] Anisetti Anusha,et al. Non-linear Shunting of Piezo Actuators for Vibration Suppression , 2008 .
[19] 富明慧,et al. EQUIVALENT ELASTIC PARAMETERS OF THE HONEYCOMB CORE , 1999 .
[20] Jin-Hwe Kweon,et al. An experimental study of the insert joint strength of composite sandwich structures , 2008 .
[21] B. Castanié,et al. Experimental and Numerical Analysis of Inserts in Sandwich Structures , 2005 .
[22] K. Qiu. Analysis and optimal design of lightweight sandwich structures and materials , 2008 .
[23] Michael F. Ashby,et al. The out-of-plane properties of honeycombs , 1992 .
[24] G Richardson,et al. Static Performance of Hot Bonded and Cold Bonded Inserts in Honeycomb Panels , 2011 .
[25] Dai Gil Lee,et al. Development of a satellite structure with the sandwich T-joint , 2010 .
[26] Michael F. Ashby,et al. Multifunctionality of cellular metal systems , 1998 .
[27] M. Ashby,et al. The topological design of multifunctional cellular metals , 2001 .
[28] D. Vandepitte,et al. Influence of Design Parameter Variability on the Dynamic Behaviour of Honeycomb Sandwich Panels , 2022 .
[29] T N Bitzer,et al. Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing , 1997 .
[30] Patrice Cartraud,et al. Homogenization of corrugated core sandwich panels , 2003 .
[31] A. Boudjemai,et al. Small Satellite Structural Optimisation Using Genetic Algorithm Approach , 2007, 2007 3rd International Conference on Recent Advances in Space Technologies.