Multivariable Adaptive Control of the Rewinding Process of a Roll-to-roll System Governed by Hyperbolic Partial Differential Equations

In this paper, an active control scheme for the rewinding process of a roll-to-roll (R2R) system is investigated. The control objectives are to suppress the transverse vibration of the moving web, to track the desired velocity profile, and to keep the desired radius value of a rewind roller. The bearing coefficient in the rewind shaft is unknown and the rotating elements in the drive motor are various. The moving web is modeled as an axially moving beam system governed by hyperbolic partial differential equations (PDEs). The control scheme utilizes two control inputs: a control force exerted from a hydraulic actuator equipped with a damper, and a control torque applied to the rewind roller. Two adaptation laws are derived to estimate the unknown bearing coefficient and the bound of variations of the rotating elements. The Lyapunov method is employed to prove the robust stability of the rewind section, specifically the uniform and ultimate boundedness of all of the signals. The effectiveness of the proposed control schemes was verified by numerical simulations.

[1]  Keum-Shik Hong,et al.  Transverse vibration control of axially moving web systems by regulation of axial tension , 2010, ICCAS 2010.

[2]  Changwoo Lee,et al.  Effect of taper tension profile on the telescoping in a winding process of high speed roll to roll printing systems , 2009 .

[3]  Darren M. Dawson,et al.  Adaptive Vibration Control of an Axially Moving String , 1999 .

[4]  K. Hong,et al.  Simultaneous control of longitudinal and transverse vibrations of an axially moving string with velocity tracking , 2012 .

[5]  Ali Tavasoli Robust adaptive boundary control of a perturbed hybrid Euler-Bernoulli beam with coupled rigid and flexible motion , 2017 .

[6]  D. Knittel,et al.  Tension control for winding systems with two degrees of freedom H/sub /spl infin// controller , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[7]  Rong-Fong Fung,et al.  Adaptive Boundary Control of an Axially Moving String System , 2000 .

[8]  Swaroop Darbha,et al.  Output Regulation of Nonlinear Systems With Application to Roll-to-Roll Manufacturing Systems , 2015, IEEE/ASME Transactions on Mechatronics.

[9]  J. Wickert Non-linear vibration of a traveling tensioned beam , 1992 .

[10]  Liqun Chen,et al.  Adaptive vibration reduction of an axially moving string via a tensioner , 2006 .

[11]  Prabhakar R. Pagilla,et al.  A Decentralized Model Reference Adaptive Controller for Large-Scale Systems , 2007 .

[12]  Vincent Gassmann,et al.  Fixed-Order $H_{\infty}$ Tension Control in the Unwinding Section of a Web Handling System Using a Pendulum Dancer , 2012, IEEE Transactions on Control Systems Technology.

[13]  Shuzhi Sam Ge,et al.  Boundary control of a flexible marine riser with vessel dynamics , 2010, Proceedings of the 2010 American Control Conference.

[14]  Lokukaluge P. Perera,et al.  Periodic Tension Disturbance Attenuation in Web Process Lines Using Active Dancers , 2003 .

[15]  Keum-Shik Hong,et al.  Boundary Control of Axially Moving Continua : Application to a Zinc Galvanizing Line , 2005 .

[16]  Fumitoshi Matsuno,et al.  Energy-based control of axially translating beams: varying tension, varying speed, and disturbance adaptation , 2005, IEEE Transactions on Control Systems Technology.

[17]  Christopher D. Rahn,et al.  Adaptive vibration isolation for axially moving strings: theory and experiment , 2002, Autom..

[18]  Kyung Hyun Choi,et al.  Fuzzy decoupling to reduce propagation of tension disturbances in roll-to-roll system , 2014 .

[19]  Prabhakar R. Pagilla,et al.  Dynamics and control of accumulators in continuous strip processing lines , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[20]  Hua Lu,et al.  Research on precision tension control system based on neural network , 2004, IEEE Transactions on Industrial Electronics.

[21]  Soon-Oh Kwon,et al.  The effect of tension on the lateral dynamics and control of a moving web , 2005 .

[22]  Kanti Jain,et al.  Flexible Electronics and Displays: High-Resolution, Roll-to-Roll, Projection Lithography and Photoablation Processing Technologies for High-Throughput Production , 2005, Proceedings of the IEEE.

[23]  Fumitoshi Matsuno,et al.  Robust boundary control of an axially moving string by using a PR transfer function , 2005, IEEE Transactions on Automatic Control.

[24]  Kai Wan,et al.  Iterative learning control for two-dimensional linear discrete systems with Fornasini-Marchesini model , 2017 .

[25]  Yan-Jun Liu,et al.  Modeling and Vibration Control for a Moving Beam With Application in a Drilling Riser , 2017, IEEE Transactions on Control Systems Technology.

[26]  Zhichao Hou,et al.  Exponential stabilization of an axially moving string with geometrical nonlinearity by linear boundary feedback , 2006 .

[27]  Shuzhi Sam Ge,et al.  Cooperative control of a nonuniform gantry crane with constrained tension , 2016, Autom..

[28]  Jafar Soltani,et al.  Nonlinear sliding-mode control of a multi-motor web-winding system without tension sensor , 2009 .

[29]  K. Hong,et al.  Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension , 2004 .

[30]  Keum Shik Hong,et al.  Transverse Vibration Control of Axially Moving Membranes by Regulation of Axial Velocity , 2012, IEEE Transactions on Control Systems Technology.

[31]  Shuzhi Sam Ge,et al.  Vibration Control of a Flexible String With Both Boundary Input and Output Constraints , 2015, IEEE Transactions on Control Systems Technology.

[32]  Wei He,et al.  Vibration Control of a Flexible Robotic Manipulator in the Presence of Input Deadzone , 2017, IEEE Transactions on Industrial Informatics.

[33]  Jing Zhang,et al.  Formation tracking control for multi-agent systems: A wave-equation based approach , 2017, International Journal of Control, Automation and Systems.

[34]  K. Hong,et al.  Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control , 2010 .

[35]  Weidong Zhu,et al.  Active Control of Translating Media With Arbitrarily Varying Length , 2001 .

[36]  K. D. Do,et al.  Boundary control of transverse motion of marine risers with actuator dynamics , 2008 .

[37]  Rong-Fong Fung,et al.  Exponential stabilization of an axially moving string by linear boundary feedback , 1999, Autom..

[38]  Hyunkyoo Kang,et al.  A novel cross directional register modeling and feedforward control in multi-layer roll-to-roll printing , 2010 .

[39]  Gabriel Abba,et al.  Modeling and robust control of winding systems for elastic webs , 2002, IEEE Trans. Control. Syst. Technol..

[40]  Keum-Shik Hong,et al.  Exponential Stabilization of an Axially Moving Tensioned Strip by Passive Damping and Boundary Control , 2002 .

[41]  Le Liu,et al.  Prescribed performance adaptive neural tracking control for strict-feedback Markovian jump nonlinear systems with time-varying delay , 2017 .

[42]  Darren M. Dawson,et al.  Lyapunov-Based Control of Mechanical Systems , 2000 .