Synergistic action of Smad4 and Pten in suppressing pancreatic ductal adenocarcinoma formation in mice

[1]  A. Abioye,et al.  Pancreatic carcinoma. , 2020, Journal of the National Medical Association.

[2]  S. Yachida,et al.  The pathology and genetics of metastatic pancreatic cancer. , 2009, Archives of pathology & laboratory medicine.

[3]  Eric T. Sawey,et al.  Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway , 2007, Proceedings of the National Academy of Sciences.

[4]  R. Hruban,et al.  Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. , 2007, Cancer cell.

[5]  M. Barbacid,et al.  Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. , 2007, Cancer cell.

[6]  J. Aster,et al.  The multifaceted role of Notch in cancer. , 2007, Current opinion in genetics & development.

[7]  Xin-Yuan Fu,et al.  Smad4 signalling in T cells is required for suppression of gastrointestinal cancer , 2006, Nature.

[8]  H. Moses,et al.  Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. , 2006, Genes & development.

[9]  Ming-Rong Wang,et al.  Synergistic function of Smad4 and PTEN in suppressing forestomach squamous cell carcinoma in the mouse. , 2006, Cancer research.

[10]  G. Gores,et al.  Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice. , 2006, The Journal of clinical investigation.

[11]  C. Deng,et al.  Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin , 2006, Oncogene.

[12]  A. Rustgi,et al.  Mutant KRAS in the initiation of pancreatic cancer. , 2005, Biochimica et biophysica acta.

[13]  D. Sargent,et al.  A prospective randomized trial comparing standard pancreatoduodenectomy with pancreatoduodenectomy with extended lymphadenectomy in resectable pancreatic head adenocarcinoma. , 2005, Surgery.

[14]  Ji-shuai Zhang,et al.  Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. , 2005, Cancer research.

[15]  J. Downward,et al.  Mechanisms of Disease: PI3K/AKT Signaling in Gastrointestinal Cancers , 2005, Zeitschrift fur Gastroenterologie.

[16]  R. DePinho,et al.  Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. , 2005, Cancer cell.

[17]  S. Majumdar,et al.  Alterations of tumor suppressor gene p16INK4a in pancreatic ductal carcinoma , 2005, BMC gastroenterology.

[18]  Yixin Yao,et al.  The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-κB and c-Myc in pancreatic cancer cells , 2005, Oncogene.

[19]  Yixin Yao,et al.  The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-κB and c-Myc in pancreatic cancer cells , 2004, Oncogene.

[20]  R. DePinho,et al.  Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. , 2003, Genes & development.

[21]  C. Deng,et al.  Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice , 2003, Development.

[22]  E. Petricoin,et al.  Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. , 2003, Cancer cell.

[23]  D. Melton,et al.  Notch signaling controls multiple steps of pancreatic differentiation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Hald,et al.  Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development. , 2003, Developmental biology.

[25]  S. Semba,et al.  Phosphorylated Akt/PKB Controls Cell Growth and Apoptosis in Intraductal Papillary–Mucinous Tumor and Invasive Ductal Adenocarcinoma of the Pancreas , 2003, Pancreas.

[26]  A. Ziegler,et al.  BRCA2 germline mutations in familial pancreatic carcinoma. , 2003, Journal of the National Cancer Institute.

[27]  R. DePinho,et al.  Pancreatic cancer biology and genetics , 2002, Nature Reviews Cancer.

[28]  Douglas B. Evans,et al.  Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[29]  W. Kim,et al.  Expression of G1-S modulators (p53, p16, p27, cyclin D1, Rb) and Smad4/Dpc4 in intrahepatic cholangiocarcinoma. , 2002, Human pathology.

[30]  K. Campbell,et al.  Pancreaticoduodenectomy With or Without Distal Gastrectomy and Extended Retroperitoneal Lymphadenectomy for Periampullary Adenocarcinoma, Part 2: Randomized Controlled Trial Evaluating Survival, Morbidity, and Mortality , 2002, Annals of surgery.

[31]  D. Melton,et al.  Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. , 2002, Development.

[32]  T. Sugai,et al.  Allelotype analysis of the PTEN, Smad4 and DCC genes in biliary tract cancer. , 2002, Anticancer research.

[33]  C. Deng,et al.  Generation of Smad4/Dpc4 conditional knockout mice , 2002, Genesis.

[34]  P. Malfertheiner,et al.  Reduced PTEN expression in the pancreas overexpressing transforming growth factor-beta 1 , 2002, British Journal of Cancer.

[35]  M. Loda,et al.  Obligate Roles for p16Ink4a and p19Arf-p53 in the Suppression of Murine Pancreatic Neoplasia , 2002, Molecular and Cellular Biology.

[36]  A. Trumpp,et al.  Negative Regulation of Neural Stem/Progenitor Cell Proliferation by the Pten Tumor Suppressor Gene in Vivo , 2001, Science.

[37]  Lin Chen,et al.  Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice , 2000, Oncogene.

[38]  C. Deng,et al.  Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. , 2000, Cytokine & growth factor reviews.

[39]  C. Wright,et al.  Mosaic Cre‐mediated recombination in pancreas using the pdx‐1 enhancer/promoter , 2000, Genesis.

[40]  M Oshima,et al.  Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. , 1999, Cancer research.

[41]  M. Stolte,et al.  Frequent 4‐bp deletion in exon 9 of the SMAD4/MADH4 gene in familial juvenile polyposis patients , 1999, Genes, chromosomes & cancer.

[42]  A. Israël,et al.  Delta-1 Activation of Notch-1 Signaling Results inHES-1 Transactivation , 1998, Molecular and Cellular Biology.

[43]  Raphael Kopan,et al.  Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain , 1998, Nature.

[44]  L. Aaltonen,et al.  Mutations in the SMAD4/DPC4 gene in juvenile polyposis. , 1998, Science.

[45]  C. Deng,et al.  The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Goodman,et al.  Tumor-suppressive pathways in pancreatic carcinoma. , 1997, Cancer research.

[47]  S. Nishizuka,et al.  ALLELOTYPE OF ADENOMA AND DIFFERENTIATED ADENOCARCINOMA OF THE STOMACH , 1996, The Journal of pathology.

[48]  C. Moskaluk,et al.  Homozygous deletion map at 18q21.1 in pancreatic cancer. , 1996, Cancer research.

[49]  Scott E. Kern,et al.  DPC4, A Candidate Tumor Suppressor Gene at Human Chromosome 18q21.1 , 1996, Science.

[50]  D. Shibata,et al.  Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes , 1988, Cell.

[51]  R. Hruban,et al.  Molecular pathogenesis of pancreatic cancer. , 2006, Best practice & research. Clinical gastroenterology.

[52]  R. DePinho,et al.  Genetics and biology of pancreatic ductal adenocarcinoma , 2006, Genes & development.

[53]  E. Furth,et al.  Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. , 2006, Cancer research.

[54]  C. Deng,et al.  Genetic Disruptions within the Murine Genome Reveal Numerous Roles of the Smad Gene Family in Development, Disease, and Cancer , 2006 .

[55]  J. Testa,et al.  Frequent activation of AKT2 kinase in human pancreatic carcinomas , 2002, Journal of cellular biochemistry.

[56]  Philippe Soriano Generalized lacZ expression with the ROSA26 Cre reporter strain , 1999, Nature Genetics.

[57]  J. Massagué TGF-beta signal transduction. , 1998, Annual review of biochemistry.

[58]  J. Rossant,et al.  The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. , 1998, Genes & development.

[59]  K. Miyazono,et al.  TGF-beta signalling from cell membrane to nucleus through SMAD proteins. , 1997, Nature.