In-place Parallel Super Scalar Samplesort (IPSSSSo)

We present a sorting algorithm that works in-place, executes in parallel, is cache-efficient, avoids branch-mispredictions, and performs work O(n log n) for arbitrary inputs with high probability. The main algorithmic contributions are new ways to make distribution-based algorithms in-place: On the practical side, by using coarse-grained block-based permutations, and on the theoretical side, we show how to eliminate the recursion stack. Extensive experiments shw that our algorithm IPSSSSo scales well on a variety of multi-core machines. We outperform our closest in-place competitor by a factor of up to 3. Even as a sequential algorithm, we are up to 1.5 times faster than the closest sequential competitor, BlockQuicksort.