Synthesis and separation of cucurbit[n]urils and their derivatives.

Cucurbit[n]uril chemistry has become an important part of contemporary supramolecular chemistry since cucurbit[n]urils (Q[n]s) are not only able to encapsulate various guests, but are also capable of coordinating to a wide range of metal ions, leading to the establishment of Q[n]-based host-guest chemistry and coordination chemistry. Each of these impressive developments can be attributed to the growth of protocols for obtaining Q[n]s. In this review, we survey synthetic procedures for obtaining cucurbit[n]urils and their substituted derivatives together with the separation and purification of these remarkable compounds. The coverage is aimed at both existing workers in the field as well as at those requiring an "entry" into Q[n]-based research.

[1]  Yunqian Zhang,et al.  Supramolecular assemblies based on some new methyl-substituted cucurbit[5]urils through hydrogen bonding , 2008 .

[2]  C. Woodward,et al.  The influence of equatorial substitution and K+ ion concentration: an encapsulation study of CH4, CH3F, CH3Cl, CH2F2 and CF4, in Q[5], CyP5Q[5] and a CyP5Q[5]-carboxylate derivative , 2014 .

[3]  H. Ritter,et al.  Cyclodextrin-click-cucurbit[6]uril: Combi-Receptor for Supramolecular Polymer Systems in Water , 2009 .

[4]  O. Scherman,et al.  A "green" method for isolation of cucurbit[7]uril via a solid state metathesis reaction. , 2010, Chemical communications.

[5]  Y. So The effect of limited monomer solubility in heterogeneous step-growth polymerization. , 2001, Accounts of chemical research.

[6]  R. Anschütz,et al.  Ueber die Constitution der Einwirkungsproducte von Thioharnstoff oder Rhodanammonium und von Harnstoff auf Benzoïn , 1895 .

[7]  Z. Tao,et al.  Chemo-selective oxidation of hydroxybenzyl alcohols with IBX in the presence of hemicucurbit[6]uril , 2013 .

[8]  E. Keinan,et al.  Dual-functional semithiobambusurils. , 2015, Chemistry.

[9]  Yunqian Zhang,et al.  Interaction models of three alkyl substituted cucurbit[6]urils with a hydrochloride salt of 4,4′-dipyridyl guest , 2008 .

[10]  J. Dognon,et al.  Synthesis of Cucurbit[6]uril Derivatives and Insights into Their Solubility in Water , 2013 .

[11]  P. Zavalij,et al.  Supramolecular ladders from dimeric cucurbit[6]uril. , 2013, Angewandte Chemie.

[12]  H. Nöth,et al.  Propellanes of the Glycoluril Series and Bridged Tetrazocines , 1987 .

[13]  A. Rockwood,et al.  Isotopic compositions and accurate masses of single isotopic peaks , 2003, Journal of the American Society for Mass Spectrometry.

[14]  R. Barker,et al.  Formation and Identification of cis- and trans-Dihydroxyimidazolidinones from Ureas and Glyoxal , 1965 .

[15]  Mao‐Lin Hu,et al.  Synthesis of a symmetrical tetrasubstituted cucurbit[6]uril and its host-guest inclusion complex with 2,2 ′-bipyridine , 2004 .

[16]  S. P. Gejji,et al.  Molecular electrostatic potentials in Cucurbit[n]uril (n = 13–16) hosts , 2011 .

[17]  J. Fettinger,et al.  Design, synthesis and self-association behavior of water soluble self complementary facial amphiphiles , 1999 .

[18]  J. Fettinger,et al.  Preparation of glycoluril monomers for expanded cucurbit[ n ]uril synthesis , 2003 .

[19]  Kimoon Kim,et al.  Supramolecular velcro for reversible underwater adhesion. , 2013, Angewandte Chemie.

[20]  L. Gilberg,et al.  Synthesis and supramolecular properties of glycoluril tetramer , 2014 .

[21]  Y. Ko,et al.  Cucurbituril anchored silica gel , 2006 .

[22]  D. Bardelang,et al.  Comprehensive Synthesis of Monohydroxy-Cucurbit[n]urils (n = 5, 6, 7, 8): High Purity and High Conversions. , 2015, Journal of the American Chemical Society.

[23]  R. Gallo,et al.  Isolation and X-ray structure of the intermediate dihydroxyimidazolidine(DHI) in the synthesis of glycoluril from glyoxal and urea. , 1988 .

[24]  V. Bakovets,et al.  Quantum chemical investigation of structural and thermodynamic peculiarities of the formation of cucurbit[n]urils , 2007 .

[25]  W. Nau,et al.  Cucurbiturils: from synthesis to high-affinity binding and catalysis. , 2015, Chemical Society reviews.

[26]  Xi Zhang,et al.  Cucurbit[8]uril-based supramolecular polymers. , 2013, Chemistry, an Asian journal.

[27]  Yunqian Zhang,et al.  Twisted cucurbit[14]uril. , 2013, Angewandte Chemie.

[28]  Ehud Keinan,et al.  Multifarenes: new modular cavitands. , 2014, Chemical communications.

[29]  J. Anderson,et al.  Encapsulation of N(2), O(2), methanol, or acetonitrile by decamethylcucurbit[5]uril(NH(4)(+))(2) complexes in the gas phase: influence of the guest on "lid" tightness. , 2001, Journal of the American Chemical Society.

[30]  Jae Wook Lee,et al.  Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. , 2003, Accounts of chemical research.

[31]  E. Schollmeyer,et al.  Hemicucurbit[6]uril a Macrocyclic Ligand with Unusual Complexing Properties , 2006 .

[32]  Yunqian Zhang,et al.  Locating the cyclopentano cousins of the cucurbit[n]uril family. , 2012, The Journal of organic chemistry.

[33]  Elizabeth L. Robinson,et al.  Synthesis of a disulfonated derivative of cucurbit[7]uril and investigations of its ability to solubilise insoluble drugs , 2015, Supramolecular chemistry.

[34]  Y. Ko,et al.  Carbohydrate wheels: cucurbituril-based carbohydrate clusters. , 2007, Angewandte Chemie.

[35]  J. Aldrich-Wright,et al.  Diffusion Coefficient of Cucurbit[n]urils (n = 6 or 7) at Various Concentrations, Temperatures, and pH† , 2009 .

[36]  R. Nolte,et al.  Bipyridine functionalized molecular clips. Self-assembly of their ruthenium complexes in water , 1998 .

[37]  G. Whelan,et al.  Molecular recognition of dihydroxyaromatics with bis-o-xylyleneglycoluril hosts , 1996 .

[38]  R. Behrend,et al.  I. Ueber Condensationsproducte aus Glycoluril und Formaldehyd , 1905 .

[39]  K. Rissanen,et al.  New chiral cyclohexylhemicucurbit[6]uril. , 2013, Organic letters.

[40]  Kimoon Kim Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. , 2002, Chemical Society reviews.

[41]  Kwang S. Kim,et al.  Structural stabilities and self-assembly of Cucurbit[n]uril (n=4-7) and decamethylcucurbit[n]uril (n=4-6): A theoretical study , 2001 .

[42]  Y. Jiao,et al.  Investigation on the Inclusion Behavior of ApoCopC with Vitamin B6 , 2008 .

[43]  V. Bakovets,et al.  Formation thermodynamics of cucurbit[6]uril macrocycle molecules: a theory study. , 2008, The journal of physical chemistry. B.

[44]  A. Kaifer,et al.  Determination of the purity of cucurbit[n]uril (n = 7, 8) host samples. , 2011, The Journal of organic chemistry.

[45]  H. Biltz Zur Kenntnis der Diureine , 1907 .

[46]  Yunqian Zhang,et al.  Synthesis of a symmetrical octamethyl-substituted cucurbituril with a dimethyl-substituted glycoluril dimer , 2014 .

[47]  L. Isaacs,et al.  Daisy chain assembly formed from a cucurbit[6]uril derivative. , 2012, Organic letters.

[48]  J. Fettinger,et al.  A DMSO‐capped dimeric glycoluril derivative , 2004 .

[49]  Witt,et al.  Diastereoselective Formation of Methylene-Bridged Glycoluril Dimers. , 2000, Organic letters.

[50]  A. Kaifer,et al.  Anion-free bambus[6]uril and its supramolecular properties. , 2011, Chemistry.

[51]  Eric Masson,et al.  Cucurbituril chemistry: a tale of supramolecular success , 2012 .

[52]  P. Zavalij,et al.  The inverted cucurbit[n]uril family. , 2005, Journal of the American Chemical Society.

[53]  J. Švec,et al.  Bambus[6]uril. , 2010, Angewandte Chemie.

[54]  Y. Ko,et al.  Preparation of Cucurbituril Anchored Silica Gel by Cross Polymerization and Its Chromatographic Applications , 2008 .

[55]  Lyle Isaacs,et al.  Acyclic CB[n]-type molecular containers: effect of solubilizing group on their function as solubilizing excipients. , 2014, Organic & biomolecular chemistry.

[56]  L. Lindoy,et al.  An approach to networks based on coordination of alkyl-substituted cucurbit[5]urils and potassium ions , 2013 .

[57]  W. L. Mock,et al.  A cucurbituril-based molecular switch , 1990 .

[58]  Z. Tao,et al.  Host–guest inclusion complexes of four partial alkyl-substituted cucurbit[6]urils with some probe guests , 2008 .

[59]  P. Anzenbacher,et al.  Supramolecular sensor for cancer-associated nitrosamines. , 2012, Journal of the American Chemical Society.

[60]  Simin Liu,et al.  Mechanism of the conversion of inverted CB[6] to CB[6]. , 2007, The Journal of organic chemistry.

[61]  Bo Yang,et al.  1,3-Propanediammonium and 1,12-dodecanediammonium encapsulated in the cavity of symmetrical α,α′,δ,δ′-tetramethyl-cucurbit[6]uril , 2015 .

[62]  D. Samsonenko,et al.  Supramolecular chemistry of cucurbiturils , 2003 .

[63]  T. Zhu,et al.  Opposing substitution in cucurbit[6]urils forms ellipsoid cavities: the symmetrical dicyclohexanocucurbit[6]uril is no exception highlighted by inclusion and exclusion complexes , 2008 .

[64]  P. Zavalij,et al.  Cucurbit[n]uril formation proceeds by step-growth cyclo-oligomerization. , 2008, Journal of the American Chemical Society.

[65]  P. H. Harrison,et al.  A Facile Preparation of Thioglycolurils from Glycolurils, and Regioselectivity in Thioglycoluril Template-Directed Crossed-Claisen Condensations , 1997 .

[66]  G. Wei,et al.  Direct coordination of metal ions to cucurbit[n]urils , 2010 .

[67]  P. Zavalij,et al.  Folding of long-chain alkanediammonium ions promoted by a cucurbituril derivative. , 2008, Organic letters.

[68]  Y. Miyahara,et al.  Remarkably facile ring-size control in macrocyclization: synthesis of hemicucurbit[6]uril and hemicucurbit[12]uril. , 2004, Angewandte Chemie.

[69]  C. Zou,et al.  Solubility of Hydroxyl Cucurbit[6]uril in Different Binary Solvents , 2014 .

[70]  D. Dybtsev,et al.  Supramolecular compounds of cucurbituril with molybdenum and tungsten chalcogenide cluster aqua complexes , 2003 .

[71]  Hyung-Kun Lee,et al.  Vesicle formed by amphiphilc cucurbit[6]uril: versatile, noncovalent modification of the vesicle surface, and multivalent binding of sugar-decorated vesicles to lectin. , 2005, Journal of the American Chemical Society.

[72]  Adam R. Urbach,et al.  Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host. , 2005, Journal of the American Chemical Society.

[73]  L. Gilberg,et al.  Cucurbiturils substituted on the methylene bridge. , 2014, Organic letters.

[74]  E. Jacobsen,et al.  A Practical Method for the Large-Scale Preparation of [N,N'-Bis(3,5-di-tertbutylsalicylidene)-1,2-cyclohexanediaminato(2-)]manganese(III) chloride, a Highly Enantioselective Epoxidation Catalyst , 1994 .

[75]  J. Collins,et al.  Protein binding by dinuclear polypyridyl ruthenium(II) complexes and the effect of cucurbit[10]uril encapsulation. , 2013, Dalton transactions.

[76]  W. L. Mock,et al.  Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis , 1983 .

[77]  C. Park,et al.  Solvent-responsive polymer nanocapsules with controlled permeability: encapsulation and release of a fluorescent dye by swelling and deswelling. , 2009, Chemical communications.

[78]  Yunqian Zhang,et al.  Structures of supramolecular assemblies formed by some partial substituted cucurbiturils and some metal ion complexes , 2008 .

[79]  P. Flory,et al.  Fundamental principles of condensation polymerization. , 1946, Chemical reviews.

[80]  Bai Yang,et al.  Photoluminescent quantum dot?cucurbituril nanocomposites. , 2009, Chemical communications.

[81]  H. Holdt,et al.  Cucurbit[5]uril, Decamethylcucurbit[5]uril and Cucurbit[6]uril. Synthesis, Solubility and Amine Complex Formation , 2001 .

[82]  S. Ryu,et al.  Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host-guest binding pair. , 2011, Nature chemistry.

[83]  Joe R. Cannon,et al.  Synthesis and self-assembly processes of monofunctionalized cucurbit[7]uril. , 2012, Journal of the American Chemical Society.

[84]  Y. Miyahara,et al.  "Molecular" molecular sieves: lid-free decamethylcucurbit[5]uril absorbs and desorbs gases selectively. , 2002, Angewandte Chemie.

[85]  Yunqian Zhang,et al.  Assemblies of Alkaline-Earth-Metal Ions with o-Tetramethyl-Substituted Cucurbituril in the Presence of the Cadmium Tetrachloride Anion , 2014 .

[86]  L. Liz‐Marzán,et al.  Metal nanoparticles and supramolecular macrocycles: a tale of synergy. , 2014, Chemistry.

[87]  Young Ho Ko,et al.  Functionalized cucurbiturils and their applications. , 2007, Chemical Society reviews.

[88]  A. Kaifer,et al.  Electrochemistry of Redox Active Centres Encapsulated by Non-Covalent Methods , 2010 .

[89]  I. Dance,et al.  A cucurbituril-based gyroscane: a new supramolecular form. , 2002, Angewandte Chemie.

[90]  Barry B Snushall,et al.  Controlling factors in the synthesis of cucurbituril and its homologues. , 2001, The Journal of organic chemistry.

[91]  J. Fettinger,et al.  Methylene-bridged glycoluril dimers: synthetic methods. , 2002, The Journal of organic chemistry.

[92]  Qing-di Zhou,et al.  Direct synthesis of cucurbit[5]uril-anchored polyacrylic acid microspheres and potential applications in selective sorption , 2015 .

[93]  R. Nolte,et al.  Synthesis and Conformational Behavior of Rhodium(I) Metallohosts Derived from Diphenylglycoluril. , 1996, The Journal of organic chemistry.

[94]  L. Isaacs Cucurbit[n]urils: from mechanism to structure and function. , 2009, Chemical communications.

[95]  H. Pauly,et al.  Einwirkung von Glyoxal auf Harnstoff; neue Bildungsweisen des Hydantoins , 1930 .

[96]  Yunqian Zhang,et al.  Supramolecular Bracelets and Interlocking Rings Elaborated Through the Interrelationship of Neighboring Chemical Environments of Alkyl-Substitution on Cucurbit[5]uril , 2008 .

[97]  O. Scherman,et al.  Metastable single-chain polymer nanoparticles prepared by dynamic cross-linking with nor-seco-cucurbit[10]uril , 2012 .

[98]  S. Sauer,et al.  Anion binding by biotin[6]uril in water. , 2015, Organic & biomolecular chemistry.

[99]  Yunqian Zhang,et al.  Crystal structures of three partially cyclopentano-substituted cucurbit[6]urils , 2009 .

[100]  S. P. Gejji,et al.  Density functional investigations on the charge distribution, vibrational spectra, and NMR chemical shifts in cucurbit[n]uril (n = 5-12) hosts. , 2010, Journal of Physical Chemistry A.

[101]  E. Akkaya,et al.  Unexpected Cyclization of Dipyridyl-glycoluril in the Presence of Formaldehyde and Strong Acid: A New Scaffold with a Potential as an Anion Receptor , 2006 .

[102]  W. L. Mock,et al.  Catalysis by cucurbituril. The significance of bound-substrate destabilization for induced triazole formation , 1989 .

[103]  W. L. Mock,et al.  Structure and selectivity in host―guest complexes of cucurbituril , 1986 .

[104]  L. Isaacs,et al.  Molecular-recognition properties of a water-soluble cucurbit[6]uril analogue. , 2006, The Journal of organic chemistry.

[105]  A. Wego,et al.  Glycoluril derivatives as precursors in the preparation of substituted cucurbit[n]urils , 2003 .

[106]  C. Yin,et al.  An oxonium hydrogen sulfate of 3a,6a-diphenylglycoluril. , 2005, Acta crystallographica. Section C, Crystal structure communications.

[107]  A. Madsen,et al.  Discovery of a cyclic 6 + 6 hexamer of D-biotin and formaldehyde , 2014 .

[108]  P. Zavalij,et al.  Cucurbit[10]uril. , 2005, Journal of the American Chemical Society.

[109]  W. L. Mock,et al.  Host-guest binding capacity of cucurbituril , 1983 .

[110]  V. Bakovets A thermodynamic analysis of the mechanism of formation of homologs of the cucurbit[n]uril family , 2007 .

[111]  J. Fettinger,et al.  Cucurbit[n]uril analogues: synthetic and mechanistic studies. , 2005, The Journal of organic chemistry.

[112]  S. Silvi,et al.  Proton and Electron Transfer Control of the Position of Cucurbit[n]uril Wheels in Pseudorotaxanes , 2007 .

[113]  Eunsung Lee,et al.  New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8) , 2000 .

[114]  R. Cao,et al.  Cucurbituril: A promising organic building block for the design of coordination compounds and beyond , 2013 .

[115]  R. M. Izatt,et al.  A highly selective compound for lead : Complexation studies of decamethylcucurbit[5]uril with metal ions , 2000 .

[116]  M. Dejnega,et al.  HPLC Analysis of the Products of the Reaction Between Glycoluril and Formaldehyde , 1998 .

[117]  Noncovalent surface grafting of uranium complexed cucurbit[5]uril oligomer onto palm shell powder: a novel approach for selective uranyl ion extraction. , 2012, The Analyst.

[118]  R. Nolte,et al.  Molecular clips and cages derived from glycoluril , 1995 .

[119]  Kimoon Kim,et al.  Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. , 2003, Journal of the American Chemical Society.

[120]  R. Raghunathan,et al.  From containers to catalysts: supramolecular catalysis within cucurbiturils. , 2012, Chemistry.

[121]  Kimoon Kim,et al.  Cucurbit[n]uril Derivatives Soluble in Water and Organic Solvents. , 2001, Angewandte Chemie.

[122]  L. Simón,et al.  Synthesis of monoacylated derivatives of 1,2- cyclohexanediamine. Evaluation of their catalytic activity in the preparation of Wieland-Miescher ketone. , 2010, The Journal of organic chemistry.

[123]  M. Wimmerová,et al.  Bambus[n]urils: a new family of macrocyclic anion receptors. , 2011, Organic letters.

[124]  Haiquan Su,et al.  Facile Syntheses of Cucurbit[6]uril-Anchored Polymers and Their Noncovalent Modification , 2013 .

[125]  V. Fedin,et al.  Mono- and polynuclear aqua complexes and cucurbit[6]uril: Versatile building blocks for supramolecular chemistry , 2004 .

[126]  W. Nau,et al.  Dynamically analyte-responsive macrocyclic host-fluorophore systems. , 2014, Accounts of chemical research.

[127]  Yunqian Zhang,et al.  A Hemimethyl-Substituted Cucurbit[7]uril Derived from 3α-Methyl-glycoluril. , 2015, Organic letters.

[128]  W. L. Mock,et al.  Organic ligand-receptor interactions between cucurbituril and alkylammonium ions , 1988 .

[129]  Mostafa M. Ahmed,et al.  Synthesis and binding behaviors of monomethyl cucurbit[6]uril , 2011 .

[130]  Lyle Isaacs,et al.  Acyclic cucurbit[n]uril congeners are high affinity hosts. , 2010, The Journal of organic chemistry.

[131]  W. Nau,et al.  Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. , 2010, Organic & biomolecular chemistry.

[132]  A. Wu,et al.  N,N′‐Bis(N,N‐dimethyl‐p‐toluidine)bis­(ethoxy­carbon­yl)glycoluril , 2005 .

[133]  Xiang-gao Meng,et al.  Solvent Effect on Pseudopolymorphism of Hemicyclohexylcucurbit[6]uril , 2009 .

[134]  C. Park,et al.  Free-standing, single-monomer-thick two-dimensional polymers through covalent self-assembly in solution. , 2013, Journal of the American Chemical Society.

[135]  E. Nakamura,et al.  Synthesis of disubstituted cucurbit[6]uril and its rotaxane derivative. , 2002, Organic letters.

[136]  R. Anschütz,et al.  Ueber die Einwirkung von Harnstoff und Thioharnstoff auf Dioxyweinsäure, Benzil und Benzoïn , 1891 .

[137]  P. Zavalij,et al.  Metal-ion-induced folding and dimerization of a glycoluril decamer in water. , 2009, Organic letters.

[138]  Uwe Pischel,et al.  Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. , 2011, Chemical reviews.

[139]  Kimoon Kim,et al.  Cucurbituril-based nanoparticles: a new efficient vehicle for targeted intracellular delivery of hydrophobic drugs. , 2009, Chemical communications.

[140]  H. Petersen Syntheses of Cyclic Ureas by α-Ureidoalkylation , 1973 .

[141]  A. Day,et al.  The Effects of Alkali Metal Cations on Product Distributions in Cucurbit[n]uril Synthesis , 2002 .

[142]  J. Fettinger,et al.  Cucurbit[n]uril analogues. , 2003, Organic letters.

[143]  Lyle Isaacs,et al.  Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals , 2012, Nature Chemistry.

[144]  E. Schollmeyer,et al.  Hemicucurbit[6]uril, a selective ligand for the complexation of anions in aqueous solution , 2005 .

[145]  V. Šindelář,et al.  A bambusuril macrocycle that binds anions in water with high affinity and selectivity. , 2015, Angewandte Chemie.

[146]  O. Scherman,et al.  Monofunctionalised cucurbit[6]uril synthesis using imidazolium host-guest complexation. , 2012, Chemical communications.

[147]  Yuqi Feng,et al.  Preparation and characterization of perhydroxyl-cucurbit[6]uril bonded silica stationary phase for hydrophilic-interaction chromatography. , 2004, Talanta.

[148]  Q. Yang,et al.  Microwave synthesis, charaterisation and electrochemical property of cucurbit[n]urils , 2014 .

[149]  Z. Tao,et al.  Supramolecular catalysis of esterification by hemicucurbiturils under mild conditions , 2012 .

[150]  E. Keinan,et al.  Facile purification of rare cucurbiturils by affinity chromatography. , 2004, Organic letters.

[151]  Julius Rebek,et al.  CONTROL OF SELF-ASSEMBLY AND REVERSIBLE ENCAPSULATION OF XENON IN A SELF-ASSEMBLING DIMER BY ACID-BASE CHEMISTRY , 1995 .

[152]  A. Ghanem,et al.  Cucurbituril: chiral applications. , 2014, Chirality.

[153]  Z. Tao,et al.  Hemicucurbit[6]uril-induced aerobic oxidation of heterocyclic compounds , 2013 .

[154]  Z. Tao,et al.  Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils: new opportunities for supramolecular architectures and materials. , 2014, Accounts of chemical research.

[155]  J. Baumberg,et al.  Raman and SERS spectroscopy of cucurbit[n]urils. , 2010, Physical chemistry chemical physics : PCCP.

[156]  R. Anschütz,et al.  Ueber die Producte der Einwirkung von Harnstoff auf Dioxobernsteinsäureester , 2022 .

[157]  Yunqian Zhang,et al.  Crystal structures of host–guest complexes of meta -tricyclohexyl cucurbit[6]uril with small organic molecules , 2008 .

[158]  D. Koh,et al.  Artificial ion channel formed by cucurbit[n]uril derivatives with a carbonyl group fringed portal reminiscent of the selectivity filter of K+ channels. , 2004, Journal of the American Chemical Society.

[159]  Lyle Isaacs,et al.  The cucurbit[n]uril family. , 2005, Angewandte Chemie.

[160]  P. Zavalij,et al.  Chiral recognition inside a chiral cucurbituril. , 2007, Angewandte Chemie.

[161]  L. Isaacs,et al.  A cucurbit[6]uril analogue: host properties monitored by fluorescence spectroscopy. , 2005, The journal of physical chemistry. B.

[162]  W. L. Mock,et al.  Dynamics of molecular recognition involving cucurbituril , 1989 .

[163]  C. Zou,et al.  Experimental Study of Cucurbit[7]uril Derivatives Modified Acrylamide Polymer for Enhanced Oil Recovery , 2014 .

[164]  M. Pierrot,et al.  Dérivés nitrés acétylés du glycolurile , 1985 .

[165]  P. Cintas Cucurbituril: Supramolecular perspectives for an old ligand , 1994 .

[166]  L. Isaacs,et al.  Substituent effects control the self-association of molecular clips in the crystalline state. , 2006, The Journal of organic chemistry.

[167]  Yunqian Zhang,et al.  Coordination of Ln3+ in ortho-tetramethyl-substituted cucurbituril supramolecular assemblies formed in the presence of cadmium nitrate: potential applications for isolation of heavier lanthanides , 2014 .

[168]  J. Fettinger,et al.  Diastereoselective formation of glycoluril dimers: isomerization mechanism and implications for cucurbit[n]uril synthesis. , 2002, Journal of the American Chemical Society.

[169]  P. Zavalij,et al.  Nor-seco-cucurbit[10]uril exhibits homotropic allosterism. , 2006, Journal of the American Chemical Society.

[170]  Yunqian Zhang,et al.  A supramolecular assembly of methyl-substituted cucurbit[5]uril and its potential applications in selective absorption , 2015 .

[171]  I. Dance,et al.  A Cucurbituril-Based Gyroscane: A New Supramolecular Form This research was supported by the Australian Research Council and the University of New South Wales. G.R.L. acknowledges the award of a Royal Society Fellowship tenable in Australia. , 2002 .

[172]  J. Collins,et al.  Cucurbit[10]uril binding of dinuclear platinum(II) and ruthenium(II) complexes: association/dissociation rates from seconds to hours. , 2010, Dalton transactions.

[173]  C. Park,et al.  Direct synthesis of polymer nanocapsules with a noncovalently tailorable surface. , 2007, Angewandte Chemie.

[174]  R. Nolte,et al.  Synthesis, Conformational Analysis, and Binding Properties of Molecular Clips with Two Different Side Walls. , 1997, The Journal of organic chemistry.

[175]  Z. Tao,et al.  Host–guest interaction of hemicucurbiturils with phenazine hydrochloride salt , 2015 .

[176]  F. Pichierri DFT study of cucurbit[n]uril, n=5–10 , 2006 .

[177]  H. Fenton,et al.  CLXIX.—Studies on certain aliphatic hydroxy-acids , 2022 .

[178]  Yunqian Zhang,et al.  Coordination of alkaline-earth metal ions to hexanohydroxyhexanomethylcucurbit[6]uril and formation of tubular coordination polymers , 2015 .

[179]  Yunqian Zhang,et al.  Synthesis of partially methyl substituted cucurbit[ n]urils with 3a-methyl-glycoluril , 2008 .

[180]  Tsuyoshi Minami,et al.  Templated synthesis of glycoluril hexamer and monofunctionalized cucurbit[6]uril derivatives. , 2011, Journal of the American Chemical Society.

[181]  Z. Tao,et al.  Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. , 2013, Chemical Society reviews.

[182]  Z. Tao,et al.  Direct syntheses of a series of cucurbit[n]uril-anchored polyacrylamides , 2015 .

[183]  W. Dunnavant,et al.  Molecular Rearrangements. I. The Base-catalyzed Condensation of Benzil with Urea1 , 1956 .

[184]  S. P. Gejji,et al.  Cavity diameter and height of cyclodextrins and cucurbit[n]urils from the molecular electrostatic potential topography , 2010 .

[185]  A. Day,et al.  A Method for Synthesizing Partially Substituted Cucurbit[n]uril , 2003, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.

[186]  I. Järving,et al.  New homologues of chiral cyclohexylhemicucurbit[n]urils , 2014 .

[187]  J. Larrow,et al.  (R,R)‐N,N′‐Bis(3,5‐di‐tert‐Butylsalicylidene)‐1,2‐Cyclohexanediamino Manganese(III) Chloride, A Highly Enantioselective Epoxidation Catalyst , 2003 .

[188]  Lyle Isaacs,et al.  Stimuli Responsive Systems Constructed Using Cucurbit[n]uril-Type Molecular Containers , 2014, Accounts of chemical research.

[189]  David J. Williams,et al.  Decamethylcucurbit[5]uril† , 1992 .

[190]  L. Edwards,et al.  Glycoluril† as an efficient molecular template for intramolecular Claisen-type condensations , 1998 .

[191]  A. Kaifer,et al.  Ternary complexes comprising cucurbit[10]uril, porphyrins, and guests. , 2008, Angewandte Chemie.

[192]  Yunqian Zhang,et al.  Coordination of Alkaline‐Earth Metal Ions in Inverted Cucurbit[6]uril Supramolecular Assemblies Formed in the Presence of Tetrachloride Zincates , 2015 .

[193]  Yunqian Zhang,et al.  Coordination of alkaline earth metal ions in the inverted cucurbit[7]uril supramolecular assemblies formed in the presence of [ZnCl4]2- and [CdCl4]2-. , 2015, Chemistry, an Asian journal.

[194]  P. Germain,et al.  Thermal behaviour of hydrated and anhydrous Cucurbituril: A DSC, T.G. and calorimetric study in temperature range from 100 to 800 K , 1998 .

[195]  P. Zavalij,et al.  A clipped [3]rotaxane derived from bis-nor-seco-cucurbit[10]uril. , 2011, Chemical communications.

[196]  Yunqian Zhang,et al.  Synthesis and X-ray structure of the inclusion complex of dodecamethylcucurbit[6]uril with 1,4-dihydroxybenzene. , 2007, Molecules.

[197]  R. Mayer,et al.  Über die basenkatalysierte Reaktion substituierter Benzile mit Harnstoff und Thioharnstoff zu Glykolurilen, Hydantoinen und Imidazolidonen bzw. Dithioglykolurilen und Thio‐hydantoinen , 1968 .

[198]  R. Gilardi,et al.  SYNTHESIS OF MOLECULAR CLEFTS DERIVED FROM GLYCOLURIL , 1999 .

[199]  Eunju Kim,et al.  Direct synthesis of polymer nanocapsules: self-assembly of polymer hollow spheres through irreversible covalent bond formation. , 2010, Journal of the American Chemical Society.