Relic abundance of asymmetric Dark Matter

We investigate the relic abundance of asymmetric Dark Matter particles that were in thermal equilibrium in the early universe. The standard analytic calculation of the symmetric Dark Matter is generalized to the asymmetric case. We calculate the asymmetry required to explain the observed Dark Matter relic abundance as a function of the annihilation cross section. We show that introducing an asymmetry always reduces the indirect detection signal from WIMP annihilation, although it has a larger annihilation cross section than symmetric Dark Matter. This opens new possibilities for the construction of realistic models of MeV Dark Matter.

[1]  Asymmetric sneutrino dark matter and the Ωb/ΩDM puzzle , 2004, hep-ph/0410114.

[2]  N. Okada,et al.  Relic Density of Dark Matter in Brane World Cosmology , 2004, hep-ph/0407092.

[3]  MeV dark matter: has it been detected? , 2003, Physical review letters.

[4]  D. Suematsu Nonthermal production of baryon and dark matter , 2005, hep-ph/0510251.

[5]  S. Nussinov Technocosmology — could a technibaryon excess provide a “natural” missing mass candidate? , 1985 .

[6]  U. Sarkar,et al.  Weakly interacting dark matter and baryogenesis , 2011 .

[7]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[8]  M. Khlopov,et al.  Composite dark matter from a model with composite Higgs boson , 2008, 0806.1191.

[9]  K. Griest,et al.  Supersymmetric dark matter , 1992 .

[10]  Gian Francesco Giudice,et al.  Largest temperature of the radiation era and its cosmological implications , 2001 .

[11]  David E. Kaplan,et al.  Asymmetric Dark Matter , 2009, 0901.4117.

[12]  A. Natarajan,et al.  Effect of early dark matter halos on reionization , 2008 .

[13]  Graciela B. Gelmini,et al.  Cosmic abundances of stable particles: Improved analysis , 1991 .

[14]  A. Strumia,et al.  Decaying dark matter can explain the e? excesses , 2008, 0811.4153.

[15]  R. Konoplich,et al.  May heavy neutrinos solve underground and cosmic-ray puzzles? , 2008 .

[16]  Pierre Salati Quintessence and the relic density of neutralinos , 2003 .

[17]  M. Halpern,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP *) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS , 2011 .

[18]  L. Hall,et al.  A Unified Theory of Matter Genesis: Asymmetric Freeze-In , 2010, 1010.0245.

[19]  Impacts of dark matter particle annihilation on recombination and the anisotropies of the cosmic microwave background , 2006, astro-ph/0603425.

[20]  R. Mohapatra,et al.  Leptogenesis as a common origin for matter and dark matter , 2009, 0911.4463.

[21]  Thermal abundance of semirelativistic relics , 2009, 0904.3046.

[22]  E. Kolb,et al.  Production of massive particles during reheating , 1998, hep-ph/9809453.

[23]  M. Mapelli,et al.  Constraining dark matter through 21-cm observations , 2007, astro-ph/0701301.

[24]  E. Fernandez-Martinez,et al.  Aidnogenesis via leptogenesis and dark sphalerons , 2010, 1009.3159.

[25]  K. Sigurdson,et al.  Unified origin for baryonic visible matter and antibaryonic dark matter. , 2010, Physical review letters.

[26]  Gamma-ray Constraint on galactic positron production by MeV dark matter. , 2004, Physical review letters.

[27]  Lisa Randall,et al.  Wino cold dark matter from anomaly mediated SUSY breaking , 2000 .

[28]  Turner,et al.  Thermal relics: Do we know their abundances? , 1990, Physical review. D, Particles and fields.

[29]  S. Rey,et al.  Baryon and dark matter genesis from strongly coupled strings , 2011, 1102.5346.

[30]  A. Belyaev,et al.  Mixed dark matter from technicolor , 2010, 1007.4839.

[31]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[32]  A. Pierce,et al.  Asymmetric Dark Matter from a GeV Hidden Sector , 2010, 1005.1655.

[33]  K. Zurek,et al.  Leptophilic dark matter from the lepton asymmetry. , 2009, Physical review letters.

[34]  M. Kakizaki,et al.  Constraints on the very early universe from thermal WIMP dark matter , 2007, 0704.1590.

[35]  Turner,et al.  On the relic, cosmic abundance of stable, weakly interacting massive particles. , 1986, Physical review. D, Particles and fields.

[36]  D. Seckel,et al.  Cosmic asymmetry, neutrinos and the sun☆ , 1987 .

[37]  M. Allain,et al.  Early SPI/INTEGRAL measurements of 511 keV line emission from the 4th quadrant of the Galaxy , 2003 .

[38]  B. Dutta,et al.  Asymmetric dark matter from hidden sector baryogenesis , 2010, 1012.1341.

[39]  M. Kakizaki,et al.  Abundance of Cosmological Relics in Low‐Temperature Scenarios , 2006, hep-ph/0603165.

[40]  Massive particle decay and cold dark matter abundance , 2004, hep-ph/0402033.

[41]  A. Falkowski,et al.  Asymmetric dark matter from leptogenesis , 2011, 1101.4936.

[42]  J. Shelton,et al.  Darkogenesis: A baryon asymmetry from the dark matter sector , 2010 .

[43]  Stefano Profumo,et al.  SUSY dark matter and quintessence , 2003 .

[44]  M. Khlopov Composite dark matter from the fourth generation , 2006 .

[45]  M. Drees,et al.  Production of massive stable particles in inflaton decay. , 2002, Physical review letters.

[46]  Michael L. Graesser,et al.  Asymmetric WIMP dark matter , 2011, 1103.2771.

[47]  N. Haba,et al.  Baryogenesis from Dark Sector , 2010, 1008.2487.

[48]  Kaplan Single explanation for both baryon and dark matter densities. , 1992, Physical review letters.

[49]  K. Schmidt-Hoberg,et al.  Light asymmetric dark matter from new strong dynamics , 2011, 1103.4350.

[50]  D. Seckel,et al.  Three exceptions in the calculation of relic abundances. , 1991, Physical review. D, Particles and fields.

[51]  Dark matter relic abundance and scalar-tensor dark energy , 2004, astro-ph/0403614.

[52]  Smoothly evolving supercritical-string dark energy relaxes supersymmetric-dark-matter constraints , 2006, hep-ph/0612152.