Science Journals — AAAS

School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China. Department of Engineering for Innovation, Universitá del Salento, 73100 Monteroni-Lecce, Italy. Department of Mechanical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. *Corresponding author. Email: huhaibao@nwpu.edu.cn (H.H.); d.dini@imperial.ac. uk (D.D.); zhouf@licp.cas.cn (F.Z.)

[1]  L. Talley,et al.  The upper, deep, abyssal and overturning circulation in the Atlantic Ocean at 30°S in 2003 and 2011 , 2019, Progress in Oceanography.

[2]  W. Liu,et al.  Stability of the Atlantic Meridional Overturning Circulation: A Review and Synthesis , 2019, Journal of Geophysical Research: Oceans.

[3]  L. Harmon Phylogenetic Comparative Methods: Learning From Trees , 2019 .

[4]  S. Dong,et al.  Shallow and Deep Eastern Boundary Currents in the South Atlantic at 34.5°S: Mean Structure and Variability , 2019, Journal of Geophysical Research: Oceans.

[5]  M. Rhein Taking a close look at ocean circulation , 2019, Science.

[6]  L. Houpert,et al.  A sea change in our view of overturning in the subpolar North Atlantic , 2019, Science.

[7]  P. Cessi The Global Overturning Circulation. , 2019, Annual review of marine science.

[8]  A. Piola,et al.  Strong Mixing and Recirculation in the Northwestern Argentine Basin , 2018, Journal of Geophysical Research: Oceans.

[9]  S. Dong,et al.  Meridional Overturning Circulation Transport Variability at 34.5°S During 2009–2017: Baroclinic and Barotropic Flows and the Dueling Influence of the Boundaries , 2018 .

[10]  U. Send,et al.  Coherent Circulation Changes in the Deep North Atlantic From 16°N and 26°N Transport Arrays , 2018 .

[11]  B. King,et al.  Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography , 2017 .

[12]  Gareth H. McKinley,et al.  Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface , 2016, Science Advances.

[13]  C. Schmid,et al.  An observations and model‐based analysis of meridional transports in the South Atlantic , 2016 .

[14]  Robin H. A. Ras,et al.  Moving superhydrophobic surfaces toward real-world applications , 2016, Science.

[15]  S. Dong,et al.  Decadal Modulations of Interhemispheric Global Atmospheric Circulations and Monsoons by the South Atlantic Meridional Overturning Circulation , 2016 .

[16]  Doris Vollmer,et al.  How Water Advances on Superhydrophobic Surfaces. , 2016, Physical review letters.

[17]  Alexander Smits,et al.  Turbulent drag reduction over air- and liquid- impregnated surfaces , 2016 .

[18]  Chao Sun,et al.  High-Reynolds number Taylor-Couette turbulence. , 2016, 1904.00183.

[19]  S. Dong,et al.  Temporal variability of the South Atlantic Meridional Overturning Circulation between 20°S and 35°S , 2015 .

[20]  S. Rahmstorf,et al.  Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation , 2015 .

[21]  A. Olver,et al.  Transient effects in lubricated textured bearings , 2015 .

[22]  Gareth H McKinley,et al.  Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces. , 2015, Physical review letters.

[23]  Bengamin I. Moat,et al.  Measuring the Atlantic Meridional Overturning Circulation at 26°N , 2015 .

[24]  J. Rothstein,et al.  Drag reduction using superhydrophobic sanded Teflon surfaces , 2014 .

[25]  Chris R Kleijn,et al.  Droplets on inclined plates: local and global hysteresis of pinned capillary surfaces. , 2014, Physical review letters.

[26]  Martin Brinkmann,et al.  On the onset of motion of sliding drops. , 2014, Soft matter.

[27]  S. Dong,et al.  Temporal variability of the meridional overturning circulation at 34.5°S: Results from two pilot boundary arrays in the South Atlantic , 2013 .

[28]  Matteo Giacopini,et al.  Fluid film lubrication in the presence of cavitation: a mass-conserving two-dimensional formulation for compressible, piezoviscous and non-Newtonian fluids , 2013 .

[29]  Simo A. Mäkiharju,et al.  On the scaling of air entrainment from a ventilated partial cavity , 2013, Journal of Fluid Mechanics.

[30]  N. Sandham,et al.  Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface , 2013, Journal of Fluid Mechanics.

[31]  D. Lohse,et al.  Control of slippage with tunable bubble mattresses , 2013, Proceedings of the National Academy of Sciences.

[32]  I. V. Shevchuk,et al.  Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet , 2013, 1305.2882.

[33]  L. Talley Closure of the Global Overturning Circulation Through the Indian, Pacific, and Southern Oceans: Schematics and Transports , 2013 .

[34]  Chang-Hwan Choi,et al.  Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow , 2013 .

[35]  Simo A. Mäkiharju,et al.  On the scaling of air layer drag reduction , 2013, Journal of Fluid Mechanics.

[36]  Matteo Ciccotti,et al.  Design principles for superamphiphobic surfaces , 2013 .

[37]  S. Dong,et al.  South Atlantic meridional fluxes , 2013 .

[38]  Michele Scaraggi,et al.  Textured Surface Hydrodynamic Lubrication: Discussion , 2012, Tribology Letters.

[39]  Michele Scaraggi Lubrication of textured surfaces: a general theory for flow and shear stress factors. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  J. Westerweel,et al.  Drag reduction by surface treatment in turbulent Taylor-Couette flow , 2011 .

[41]  S. Garzoli,et al.  Geostrophic Velocity Measurement Techniques for the Meridional Overturning Circulation and Meridional Heat Transport in the South Atlantic , 2011 .

[42]  Michael Nosonovsky Materials science: Slippery when wetted , 2011, Nature.

[43]  Deborah K. Smith,et al.  A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications , 2011 .

[44]  G. Karafiath,et al.  Synergy of Resistance Reduction Effects for a Ship With Bottom Air Cavity , 2011 .

[45]  H. Bryden,et al.  South Atlantic overturning circulation at 24°S , 2011 .

[46]  Ullrich Steiner,et al.  Metastable underwater superhydrophobicity. , 2010, Physical review letters.

[47]  Simo A. Mäkiharju,et al.  Partial cavity drag reduction at high reynolds numbers , 2010 .

[48]  Andrew D. Greene,et al.  Mapping Circulation in the Kuroshio Extension with an Array of Current and Pressure Recording Inverted Echo Sounders , 2010 .

[49]  Jin Zhai,et al.  Directional water collection on wetted spider silk , 2010, Nature.

[50]  H. Tsao,et al.  Wetting Invasion and Retreat across a Corner Boundary , 2010 .

[51]  J. Rothstein Slip on Superhydrophobic Surfaces , 2010 .

[52]  S. Ceccio Friction Drag Reduction of External Flows with Bubble and Gas Injection , 2010 .

[53]  S. Dong,et al.  Interannual variations in the Atlantic meridional overturning circulation and its relationship with the net northward heat transport in the South Atlantic , 2009 .

[54]  Chang-Jin C J Kim,et al.  Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[55]  D. Bonn,et al.  Wetting and Spreading , 2009 .

[56]  J. R. E. Lutjeharms,et al.  Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation , 2008, Nature.

[57]  O. Saenko On the Strong Seasonal Currents in the Deep Ocean , 2008 .

[58]  David R. Dowling,et al.  Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction , 2008, Journal of Fluid Mechanics.

[59]  Chang-Hwan Choi,et al.  Structured surfaces for a giant liquid slip. , 2008, Physical review letters.

[60]  Yasushi Takeda,et al.  Frictional drag reduction in bubbly Couette–Taylor flow , 2008 .

[61]  J. Harting,et al.  Slip flow over structured surfaces with entrapped microbubbles. , 2008, Physical review letters.

[62]  Christopher White,et al.  Mechanics and Prediction of Turbulent Drag Reduction with Polymer Additives , 2008 .

[63]  Christophe Ybert,et al.  Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries , 2007 .

[64]  K. Speer,et al.  Global Ocean Meridional Overturning , 2007 .

[65]  J. Marotzke,et al.  Observed Flow Compensation Associated with the MOC at 26.5°N in the Atlantic , 2007, Science.

[66]  J. Marotzke,et al.  Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N , 2007, Science.

[67]  S. Garzoli,et al.  Meridional heat transport determined with expandable bathythermographs—Part II: South Atlantic transport , 2007 .

[68]  Cécile Cottin-Bizonne,et al.  High friction on a bubble mattress. , 2007, Nature materials.

[69]  P Tabeling,et al.  Slippage of water past superhydrophobic carbon nanotube forests in microchannels. , 2006, Physical review letters.

[70]  David R. Dowling,et al.  Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer , 2006, Journal of Fluid Mechanics.

[71]  Chang-Hwan Choi,et al.  Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. , 2006, Physical review letters.

[72]  J. Rothstein,et al.  Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces , 2005 .

[73]  Stefan Luther,et al.  Drag reduction in bubbly Taylor-Couette turbulence. , 2005, Physical review letters.

[74]  B. King,et al.  Oceanic Fluxes in the South Atlantic , 2005 .

[75]  Blair Perot,et al.  Laminar drag reduction in microchannels using ultrahydrophobic surfaces , 2004 .

[76]  John Kim,et al.  Effects of hydrophobic surface on skin-friction drag , 2004 .

[77]  M. Arhan,et al.  On the deep water circulation of the eastern South Atlantic Ocean , 2003 .

[78]  Richard M. Lueptow,et al.  Three-dimensional velocity field for wavy Taylor–Couette flow , 2003 .

[79]  Evolution of mean and fluctuating velocity components in the laminar–turbulent transition of spherical Couette flow , 2002 .

[80]  Michel Riondet,et al.  The cavitation instability induced by the development of a re-entrant jet , 2001, Journal of Fluid Mechanics.

[81]  Toru Iwasaki,et al.  Frictional drag reduction with air lubricant over a super-water-repellent surface , 2000 .

[82]  Carl Wunsch,et al.  Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data , 2000, Nature.

[83]  C. Meinen,et al.  Vertical structure and transport on a transect across the North Atlantic Current near 42°N: Time series and mean , 2000 .

[84]  W. Zenk,et al.  Antarctic Bottom Water Flow through the Hunter Channel , 1999 .

[85]  D. Penny The comparative method in evolutionary biology , 1992 .

[86]  Harry L. Swinney,et al.  Flow regimes in a circular Couette system with independently rotating cylinders , 1986, Journal of Fluid Mechanics.

[87]  Philip S. Marcus,et al.  Simulation of Taylor-Couette flow. Part 2. Numerical results for wavy-vortex flow with one travelling wave , 1984, Journal of Fluid Mechanics.

[88]  P. G. de Gennes,et al.  A model for contact angle hysteresis , 1984 .

[89]  N. Hogg On the transport and modification of Antarctic Bottom Water in the Vema Channel , 1982 .

[90]  Rory O. R. Y. Thompson,et al.  Coherence Significance Levels , 1979 .

[91]  E. Bilgen,et al.  Functional Dependence of Torque Coefficient of Coaxial Cylinders on Gap Width and Reynolds Numbers , 1973 .

[92]  J. T. Stuart On the non-linear mechanics of hydrodynamic stability , 1958, Journal of Fluid Mechanics.