Distributed rhythm generators underlie Caenorhabditis elegans forward locomotion

Coordinated rhythmic movements are ubiquitous in animal behavior. In many organisms, chains of neural oscillators underlie the generation of these rhythms. In C. elegans, locomotor wave generation has been poorly understood; in particular, it is unclear where in the circuit rhythms are generated, and whether there exists more than one such generator. We used optogenetic and ablation experiments to probe the nature of rhythm generation in the locomotor circuit. We found that multiple sections of forward locomotor circuitry are capable of independently generating rhythms. By perturbing different components of the motor circuit, we localize the source of secondary rhythms to cholinergic motor neurons in the midbody. Using rhythmic optogenetic perturbation, we demonstrate bidirectional entrainment of oscillations between different body regions. These results show that, as in many other vertebrates and invertebrates, the C. elegans motor circuit contains multiple oscillators that coordinate activity to generate behavior.

[1]  S. Brenner,et al.  The structure of the ventral nerve cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[2]  B. Meldrum GABA , 1977, Nature.

[3]  S. Grillner,et al.  Entrainment of the spinal pattern generators for swimming by mechano-sensitive elements in the lamprey spinal cord in vitro , 1981, Brain Research.

[4]  S. Grillner,et al.  Peripheral feedback mechanisms acting on the central pattern generators for locomotion in fish and cat. , 1981, Canadian journal of physiology and pharmacology.

[5]  J. C. Weeks Neuronal basis of leech swimming: separation of swim initiation, pattern generation, and intersegmental coordination by selective lesions. , 1981, Journal of neurophysiology.

[6]  K. Pearson,et al.  Interneurons in the flight system of the locust: Distribution, connections, and resetting properties , 1983, The Journal of comparative neurology.

[7]  W. O. Friesen,et al.  Intersegmental coordination of the leech swimming rhythm. I. Roles of cycle period gradient and coupling strength. , 1985, Journal of neurophysiology.

[8]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  K. Sigvardt,et al.  Features of entrainment of spinal pattern generators for locomotor activity in the lamprey spinal cord , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  三宅信一郎 外反母趾の Biomechanical analysis-靴のヒール高との関連 , 1991 .

[12]  H. Horvitz,et al.  The GABAergic nervous system of Caenorhabditis elegans , 1993, Nature.

[13]  H. Horvitz,et al.  Genes required for GABA function in Caenorhabditis elegans , 1993, Nature.

[14]  S. R. Wicks,et al.  Integration of mechanosensory stimuli in Caenorhabditis elegans , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[16]  William R. Schafer,et al.  Control of Alternative Behavioral States by Serotonin in Caenorhabditis elegans , 1998, Neuron.

[17]  E. Jorgensen,et al.  The Caenorhabditis elegans unc-49 Locus Encodes Multiple Subunits of a Heteromultimeric GABA Receptor , 1999, The Journal of Neuroscience.

[18]  A. V. Maricq,et al.  Neuronal Control of Locomotion in C. elegans Is Modified by a Dominant Mutation in the GLR-1 Ionotropic Glutamate Receptor , 1999, Neuron.

[19]  W. Otto Friesen,et al.  Sensory Feedback Can Coordinate the Swimming Activity of the Leech , 1999, The Journal of Neuroscience.

[20]  R. Kerr,et al.  Optical Imaging of Calcium Transients in Neurons and Pharyngeal Muscle of C. elegans , 2000, Neuron.

[21]  Wen-chang Lin,et al.  Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. , 2000, Genome research.

[22]  W. O. Friesen,et al.  Functional analyses of the leech swim oscillator. , 2001, Journal of neurophysiology.

[23]  Masayoshi Enami,et al.  Reverse genetics. , 2002, Vaccine.

[24]  G. Wendler The influence of proprioceptive feedback on Locust flight co-ordination , 1974, Journal of comparative physiology.

[25]  W. O. Friesen,et al.  Entrainment of leech swimming activity by the ventral stretch receptor , 2004, Journal of Comparative Physiology A.

[26]  Michael R Koelle,et al.  Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans , 2004, Nature Neuroscience.

[27]  A. Cohen Intersegmental coordinating system of the lamprey central pattern generator for locomotion , 1987, Journal of Comparative Physiology A.

[28]  W. O. Friesen,et al.  Neuronal control of leech behavior , 2005, Progress in Neurobiology.

[29]  E. Marder,et al.  Invertebrate Central Pattern Generation Moves along , 2005, Current Biology.

[30]  Zeynep F. Altun,et al.  WormAtlas Hermaphrodite Handbook - Nervous System - General Description , 2005 .

[31]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[32]  Qiang Liu,et al.  Low Conductance Gap Junctions Mediate Specific Electrical Coupling in Body-wall Muscle Cells of Caenorhabditis elegans* , 2006, Journal of Biological Chemistry.

[33]  Theresa Stiernagle Maintenance of C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[34]  O. Kiehn Locomotor circuits in the mammalian spinal cord. , 2006, Annual review of neuroscience.

[35]  R. Kerr Imaging the activity of neurons and muscles. , 2006, WormBook : the online review of C. elegans biology.

[36]  Tetsuya Iwasaki,et al.  Systems-level modeling of neuronal circuits for leech swimming , 2007, Journal of Computational Neuroscience.

[37]  A. V. Maricq,et al.  Ionotropic glutamate receptors: genetics, behavior and electrophysiology. , 2006, WormBook : the online review of C. elegans biology.

[38]  Paul W. Sternberg,et al.  Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics , 2007, Journal of Computational Neuroscience.

[39]  M. Koelle,et al.  Biogenic amine neurotransmitters in C. , 2007 .

[40]  E. Marder,et al.  Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. , 2007, Annual review of physiology.

[41]  M. Koelle,et al.  Biogenic amine neurotransmitters in C. elegans. , 2007, WormBook : the online review of C. elegans biology.

[42]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[43]  J. E. Shaw,et al.  Interactions between innexins UNC-7 and UNC-9 mediate electrical synapse specificity in the Caenorhabditis elegans locomotory nervous system , 2009, Neural Development.

[44]  Lindy Holden-Dye,et al.  The Actions of Caenorhabditis elegans Neuropeptide-Like Peptides (NLPs) on Body Wall Muscle of Ascaris suum and Pharyngeal Muscle of C. elegans , 2008, Acta biologica Hungarica.

[45]  Jonathan T. Pierce-Shimomura,et al.  Genetic analysis of crawling and swimming locomotory patterns in C. elegans , 2008, Proceedings of the National Academy of Sciences.

[46]  M. Zhen,et al.  Optogenetic analysis of synaptic function , 2008, Nature Methods.

[47]  S. Fields,et al.  Identification of major classes of cholinergic neurons in the nematode Caenorhabditis elegans , 2008, The Journal of comparative neurology.

[48]  M. Goulding Circuits controlling vertebrate locomotion: moving in a new direction , 2009, Nature Reviews Neuroscience.

[49]  N. Cohen,et al.  Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait , 2009, HFSP journal.

[50]  Aravinthan D. T. Samuel,et al.  Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans , 2010, Proceedings of the National Academy of Sciences.

[51]  Michael J. O'Donovan,et al.  Motoneurons Dedicated to Either Forward or Backward Locomotion in the Nematode Caenorhabditis elegans , 2010, The Journal of Neuroscience.

[52]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[53]  J. T. Hackett,et al.  Neuronal control of swimming behavior: Comparison of vertebrate and invertebrate model systems , 2011, Progress in Neurobiology.

[54]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[55]  William S. Ryu,et al.  An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion , 2011, Neuron.

[56]  Matthew M. Crane,et al.  Real-time multimodal optical control of neurons and muscles in freely-behaving Caenorhabditis elegans , 2011, Nature Methods.

[57]  Bulbul Chakraborty,et al.  Phase and frequency entrainment in locally coupled phase oscillators with repulsive interactions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Aravinthan D. T. Samuel,et al.  Proprioceptive Coupling within Motor Neurons Drives C. elegans Forward Locomotion , 2012, Neuron.

[59]  Jordan H. Boyle,et al.  Gait Modulation in C. elegans: An Integrated Neuromechanical Model , 2012, Front. Comput. Neurosci..

[60]  Steven J. Husson,et al.  Microbial Light-Activatable Proton Pumps as Neuronal Inhibitors to Functionally Dissect Neuronal Networks in C. elegans , 2012, PloS one.

[61]  Zengcai V. Guo,et al.  Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behavior , 2012, Nature.

[62]  Roger Y. Tsien,et al.  Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG , 2012, Proceedings of the National Academy of Sciences.

[63]  H. Bringmann,et al.  An AP2 Transcription Factor Is Required for a Sleep-Active Neuron to Induce Sleep-like Quiescence in C. elegans , 2013, Current Biology.

[64]  Christopher Fang-Yen,et al.  Efficient Single-Cell Transgene Induction in Caenorhabditis elegans Using a Pulsed Infrared Laser , 2013, G3: Genes, Genomes, Genetics.

[65]  Christopher V. Gabel,et al.  Long-Term Imaging of Caenorhabditis elegans Using Nanoparticle-Mediated Immobilization , 2013, PloS one.

[66]  Paul W. Sternberg,et al.  Archaerhodopsin Variants with Enhanced Voltage Sensitive Fluorescence in Mammalian and Caenorhabditis elegans Neurons , 2014, Nature Communications.

[67]  J. Gjorgjieva,et al.  Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand? , 2014, Bioscience.

[68]  Sten Grillner,et al.  The intrinsic operation of the networks that make us locomote , 2015, Current Opinion in Neurobiology.

[69]  Mei Zhen,et al.  The NCA sodium leak channel is required for persistent motor circuit activity that sustains locomotion , 2015, Nature Communications.

[70]  Aravinthan D. T. Samuel,et al.  C. elegans locomotion: small circuits, complex functions , 2015, Current Opinion in Neurobiology.

[71]  Aravinthan D. T. Samuel,et al.  Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[72]  Lin Xie,et al.  Corrigendum: The NCA sodium leak channel is required for persistent motor circuit activity that sustains locomotion. , 2015, Nature communications.

[73]  O. Kiehn Decoding the organization of spinal circuits that control locomotion , 2016, Nature Reviews Neuroscience.

[74]  Andrew D. Chisholm,et al.  Highly efficient optogenetic cell ablation in C. elegans using membrane-targeted miniSOG , 2016, Scientific Reports.

[75]  Abdeljabbar El Manira,et al.  Motor neurons control locomotor circuit function retrogradely via gap junctions , 2016, Nature.

[76]  R. Mailler,et al.  Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses , 2017, Nature Communications.

[77]  Horacio G. Rotstein,et al.  Feedback Signal from Motoneurons Influences a Rhythmic Pattern Generator , 2017, The Journal of Neuroscience.

[78]  Eli J. Cornblath,et al.  Distributed Rhythm Generators Underlie Caenorhabditis elegans Forward Locomotion , 2017, bioRxiv.

[79]  Mark J Alkema,et al.  Excitatory motor neurons are local oscillators for backward locomotion , 2017, eLife.