Spherical Radon Transform and Related Wavelet Transforms
暂无分享,去创建一个
[1] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[2] Ahmed Abouelaz,et al. Sur la transformation de Radon de la sphère $S^d$ , 1993 .
[3] G. Backus,et al. Inference from Inadequate and Inaccurate Data, III. , 1970, Proceedings of the National Academy of Sciences of the United States of America.
[4] J. Namazi,et al. A singular integral , 1986 .
[5] S. Helgason,et al. Differential operators on homogeneous spaces , 1959 .
[6] Eric Todd Quinto. Null spaces and ranges for the classical and spherical Radon transforms , 1982 .
[7] J. S Byrnes,et al. Probabilistic and stochastic methods in analysis, with applications , 1992 .
[8] P. Funk. Über Flächen mit lauter geschlossenen geodätischen Linien , 1913 .
[9] Paul Goodey,et al. Centrally symmetric convex bodies and the spherical Radon transform , 1992 .
[10] P. Funk. Über eine geometrische Anwendung der Abelschen Integralgleichung , 1915 .
[11] E. T. Quinto. Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform , 1983 .
[12] B. Rubin. Inversion ofk-Plane Transforms via Continuous Wavelet Transforms , 1998 .
[13] C. Berenstein,et al. Radon transform of Lp -functions on the Lobachevsky space and hyperbolic wavelet transforms , 1999 .
[14] V. Guillemin. The radon transform on zoll surfaces , 1976 .
[15] David F. Walnut,et al. Applications of Gabor and wavelet expansions to the Radon transform , 1992 .
[16] Christopher Heil,et al. Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..
[17] E. Grinberg. Spherical harmonics and integral geometry on projective spaces , 1983 .
[18] G. Backus. Geographical interpretation of measurements of average phase velocities of surface waves over great circular and great semi-circular paths , 1964 .
[19] Matthias Holschneider,et al. Wavelets - an analysis tool , 1995, Oxford mathematical monographs.
[20] Boris Rubin,et al. Fractional Integrals and Potentials , 1996 .
[21] A. Grossmann,et al. Transforms associated to square integrable group representations. I. General results , 1985 .
[22] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[23] G. Weiss,et al. Littlewood-Paley Theory and the Study of Function Spaces , 1991 .
[24] Jörg M. Wills,et al. Handbook of Convex Geometry , 1993 .
[25] Boris Rubin,et al. The Calderón reproducing formula, windowed X-ray transforms, and radon transforms in LP-spaces , 1998 .
[26] R. Strichartz. Convolutions with kernels having singularities on a sphere , 1970 .
[27] Carlos A. Berenstein,et al. Local Inversion of the Radon Transform in Even Dimensions Using Wavelets , 1993 .
[28] W. H. Reid,et al. Mathematical problems in the geophysical sciences , 1971 .
[29] Matthias Holschneider,et al. Inverse Radon transforms through inverse wavelet transforms , 1991 .
[30] Hubert Berens,et al. Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten , 1968 .
[31] B. Rubin. Inversion of Radon transforms using wavelet transforms generated by wavelet measures , 1999 .
[32] Robert S. Strichartz,et al. $L^p$ estimates for Radon transforms in Euclidean and non-Euclidean spaces , 1981 .
[33] S. Helgason. The Radon Transform , 1980 .