Spherical Radon Transform and Related Wavelet Transforms

Abstract Continuous wavelet transforms associated with the spherical Radon transformRfon then-dimensional unit sphere S n,n≥ 2, are introduced. It is assumed thatf ∈ Lp( S n) orf ∈ C( S n). For the operatorRand for its inverseR−1explicit representations are given in the wavelet form. As a consequence we obtain the characterization of the range ofR.

[1]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[2]  Ahmed Abouelaz,et al.  Sur la transformation de Radon de la sphère $S^d$ , 1993 .

[3]  G. Backus,et al.  Inference from Inadequate and Inaccurate Data, III. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Namazi,et al.  A singular integral , 1986 .

[5]  S. Helgason,et al.  Differential operators on homogeneous spaces , 1959 .

[6]  Eric Todd Quinto Null spaces and ranges for the classical and spherical Radon transforms , 1982 .

[7]  J. S Byrnes,et al.  Probabilistic and stochastic methods in analysis, with applications , 1992 .

[8]  P. Funk Über Flächen mit lauter geschlossenen geodätischen Linien , 1913 .

[9]  Paul Goodey,et al.  Centrally symmetric convex bodies and the spherical Radon transform , 1992 .

[10]  P. Funk Über eine geometrische Anwendung der Abelschen Integralgleichung , 1915 .

[11]  E. T. Quinto Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform , 1983 .

[12]  B. Rubin Inversion ofk-Plane Transforms via Continuous Wavelet Transforms , 1998 .

[13]  C. Berenstein,et al.  Radon transform of Lp -functions on the Lobachevsky space and hyperbolic wavelet transforms , 1999 .

[14]  V. Guillemin The radon transform on zoll surfaces , 1976 .

[15]  David F. Walnut,et al.  Applications of Gabor and wavelet expansions to the Radon transform , 1992 .

[16]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[17]  E. Grinberg Spherical harmonics and integral geometry on projective spaces , 1983 .

[18]  G. Backus Geographical interpretation of measurements of average phase velocities of surface waves over great circular and great semi-circular paths , 1964 .

[19]  Matthias Holschneider,et al.  Wavelets - an analysis tool , 1995, Oxford mathematical monographs.

[20]  Boris Rubin,et al.  Fractional Integrals and Potentials , 1996 .

[21]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[22]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[23]  G. Weiss,et al.  Littlewood-Paley Theory and the Study of Function Spaces , 1991 .

[24]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[25]  Boris Rubin,et al.  The Calderón reproducing formula, windowed X-ray transforms, and radon transforms in LP-spaces , 1998 .

[26]  R. Strichartz Convolutions with kernels having singularities on a sphere , 1970 .

[27]  Carlos A. Berenstein,et al.  Local Inversion of the Radon Transform in Even Dimensions Using Wavelets , 1993 .

[28]  W. H. Reid,et al.  Mathematical problems in the geophysical sciences , 1971 .

[29]  Matthias Holschneider,et al.  Inverse Radon transforms through inverse wavelet transforms , 1991 .

[30]  Hubert Berens,et al.  Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten , 1968 .

[31]  B. Rubin Inversion of Radon transforms using wavelet transforms generated by wavelet measures , 1999 .

[32]  Robert S. Strichartz,et al.  $L^p$ estimates for Radon transforms in Euclidean and non-Euclidean spaces , 1981 .

[33]  S. Helgason The Radon Transform , 1980 .