Structural changes in the SL5 and SL6 leader sequences of HIV-1 RNA following interactions with the viral mGag protein.

[1]  Marc C. Johnson,et al.  Mutations in the Spacer Peptide and Adjoining Sequences in Rous Sarcoma Virus Gag Lead to Tubular Budding , 2008, Journal of Virology.

[2]  Jonathan J. Ellis,et al.  Protein–RNA interactions: Structural analysis and functional classes , 2006, Proteins.

[3]  C. Liang,et al.  The T12I mutation within the SP1 region of Gag restricts packaging of spliced viral RNA into human immunodeficiency virus type 1 with mutated RNA packaging signals and mutated nucleocapsid sequence. , 2006, Virology.

[4]  M. Wainberg,et al.  A HIV-1 minimal gag protein is superior to nucleocapsid at in vitro annealing and exhibits multimerization-induced inhibition of reverse transcription. , 2005, The Journal of biological chemistry.

[5]  H. Huthoff,et al.  A Riboswitch Regulates RNA Dimerization and Packaging in Human Immunodeficiency Virus Type 1 Virions , 2004, Journal of Virology.

[6]  M. Wainberg,et al.  In Vitro Identification and Characterization of an Early Complex Linking HIV-1 Genomic RNA Recognition and Pr55Gag Multimerization* , 2004, Journal of Biological Chemistry.

[7]  M. Wainberg,et al.  Effects of a Single Amino Acid Substitution within thep2 Region of Human Immunodeficiency Virus Type 1 on Packagingof Spliced ViralRNA , 2003, Journal of Virology.

[8]  S. Scarlata,et al.  Role of HIV-1 Gag domains in viral assembly. , 2003, Biochimica et biophysica acta.

[9]  J. Briggs,et al.  Structural organization of authentic, mature HIV‐1 virions and cores , 2003, The EMBO journal.

[10]  M. Wainberg,et al.  Characterization of a Putative α-Helix across the Capsid-SP1 Boundary That Is Critical for the Multimerization of Human Immunodeficiency Virus Type 1 Gag , 2002, Journal of Virology.

[11]  Ben Berkhout,et al.  Multiple secondary structure rearrangements during HIV-1 RNA dimerization. , 2002, Biochemistry.

[12]  Chantal Ehresmann,et al.  In Vitro Evidence for a Long Range Pseudoknot in the 5′-Untranslated and Matrix Coding Regions of HIV-1 Genomic RNA* , 2002, The Journal of Biological Chemistry.

[13]  Wesley I. Sundquist,et al.  Image reconstructions of helical assemblies of the HIV-1 CA protein , 2022 .

[14]  B. Strack,et al.  Efficient Particle Production by Minimal Gag Constructs Which Retain the Carboxy-Terminal Domain of Human Immunodeficiency Virus Type 1 Capsid-p2 and a Late Assembly Domain , 2000, Journal of Virology.

[15]  S. Fuller,et al.  A conformational switch controlling HIV‐1 morphogenesis , 2000, The EMBO journal.

[16]  I. Jones,et al.  Roles of Matrix, p2, and N-Terminal Myristoylation in Human Immunodeficiency Virus Type 1 Gag Assembly , 2000, Journal of Virology.

[17]  D. Draper Themes in RNA-protein recognition. , 1999, Journal of molecular biology.

[18]  Chin-Tien Wang,et al.  Analysis of Minimal Human Immunodeficiency Virus Type 1 gag Coding Sequences Capable of Virus-Like Particle Assembly and Release , 1998, Journal of Virology.

[19]  A. Rein,et al.  Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. , 1998, Trends in biochemical sciences.

[20]  J. Kaye,et al.  Nonreciprocal Packaging of Human Immunodeficiency Virus Type 1 and Type 2 RNA: a Possible Role for the p2 Domain of Gag in RNA Encapsidation , 1998, Journal of Virology.

[21]  E. Hunter,et al.  Functional Analysis of the Core Human Immunodeficiency Virus Type 1 Packaging Signal in a Permissive Cell Line , 1998, Journal of Virology.

[22]  S. Höglund,et al.  A Putative α-Helical Structure Which Overlaps the Capsid-p2 Boundary in the Human Immunodeficiency Virus Type 1 Gag Precursor Is Crucial for Viral Particle Assembly , 1998, Journal of Virology.

[23]  W. Sundquist,et al.  Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. , 1997, Science.

[24]  S. Goff,et al.  5' regions of HIV-1 RNAs are not sufficient for encapsidation: implications for the HIV-1 packaging signal. , 1995, Virology.

[25]  H. Zentgraf,et al.  The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity , 1995, Journal of virology.

[26]  C. Sassetti,et al.  RNA secondary structure and binding sites for gag gene products in the 5' packaging signal of human immunodeficiency virus type 1 , 1995, Journal of virology.

[27]  E. Wimmer,et al.  Proteolytic processing of polyproteins in the replication of RNA viruses. , 1989, Biochemistry.

[28]  H. Göttlinger,et al.  The HIV-1 assembly machine. , 2001, AIDS.

[29]  H. Huthoff,et al.  Two alternating structures of the HIV-1 leader RNA. , 2001, RNA.

[30]  Michael Zuker,et al.  Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide , 1999 .

[31]  A. Frankel,et al.  HIV-1: fifteen proteins and an RNA. , 1998, Annual review of biochemistry.

[32]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .