Degradation of hexagonal silicon-carbide-based bipolar devices

Only a few years ago, an account of degradation of silicon carbide high-voltage p-i-n diodes was presented at the European Conference on Silicon Carbide and Related Compounds (Kloster Banz, Germany, 2000). This report was followed by the intense effort of multiple groups utilizing varied approaches and subsequent progress in both fundamental understanding of this phenomenon and its elimination. The degradation of SiC p-i-n junctions is now well documented to be due to the expansion of Shockley-type stacking faults in the part of the devices reached by the electron-hole plasma. The faults can gradually cover most of the junction area, impeding current flow and, as a result, increasing the on-state resistance. While in most semiconductors stacking faults are electrically inactive, in hexagonal silicon carbide polytypes (4H- and 6H-SiC) they form quantum-well-like electron states observed in luminescence and confirmed by first-principles calculations. The stacking-fault expansion occurs via motion of 30° sil...

[1]  Y. Tairov Growth of bulk SiC , 1995 .

[2]  D. Hull,et al.  5 – Dislocations in Face-centred Cubic Metals , 2001 .

[3]  T. Chow,et al.  Stacking Fault Formation Sites and Growth in Thick-Epi SiC PiN Diodes , 2004 .

[4]  M. Skowronski,et al.  Quantum well behavior of single stacking fault 3C inclusions in 4H-SiC p-i-n diodes studied by ballistic electron emission microscopy , 2005 .

[5]  Michael Dudley,et al.  Basal plane slip and formation of mixed-tilt boundaries in sublimation-grown hexagonal polytype silicon carbide single crystals , 2002 .

[6]  H. Bleichner,et al.  Bright-line defect formation in silicon carbide injection diodes , 1997 .

[7]  K. Irmscher,et al.  Influence of nitrogen doping on the properties of 4H–SiC single crystals grown by physical vapor transport , 2003 .

[8]  S. Ha,et al.  Nucleation sites of recombination-enhanced stacking fault formation in silicon carbide p-i-n diodes , 2004 .

[9]  John W. Palmour,et al.  Approaches to Stabilizing the Forward Voltage of Bipolar SiC Devices , 2004 .

[10]  Tsunenobu Kimoto,et al.  Step‐Controlled Epitaxial Growth of High‐Quality SiC Layers , 1997 .

[11]  Christer Hallin,et al.  The minority carrier lifetime of n‐type 4H‐ and 6H‐SiC epitaxial layers , 1996 .

[12]  M. Das,et al.  Driving force of stacking-fault formation in SiC p-i-n diodes. , 2004, Physical review letters.

[13]  Krishna Shenai,et al.  Optimum semiconductors for high-power electronics , 1989 .

[14]  T. Frauenheim,et al.  Structure and motion of basal dislocations in silicon carbide , 2003 .

[15]  S. Öberg,et al.  Ab initio study of 3C inclusions and stacking fault–stacking fault interactions in 6H-SiC , 2003 .

[16]  H. Tsuchida,et al.  Homoepitaxial growth and characterization of thick SiC layers with a reduced micropipe density , 2004 .

[17]  M. Skowronski,et al.  Dislocation loops formed during the degradation of forward-biased 4H–SiC p-n junctions , 2003 .

[18]  Jan Linnros,et al.  Recombination-enhanced extension of stacking faults in 4H-SiC p-i-n diodes under forward bias , 2002 .

[19]  H. Lendenmann,et al.  Properties and origins of different stacking faults that cause degradation in SiC PiN diodes , 2004 .

[20]  M. Dudley,et al.  X-RAY DIFFRACTION MEASUREMENT OF DOPING-INDUCED LATTICE MISMATCH IN N-TYPE 4H-SIC EPILAYERS GROWN ON P-TYPE SUBSTRATES , 2003 .

[21]  A. Henry,et al.  Stacking Fault Formation in Highly Doped 4H-SiC Epilayers during Annealing , 2002 .

[22]  M. Das,et al.  Stacking fault formation in SiC p-i-n diodes of (11-20) orientation , 2004 .

[23]  H. Lendenmann,et al.  Degradation in SiC Bipolar Devices: Sources and Consequences of Electrically Active Dislocations in SiC , 2003 .

[24]  H. Tsuchida,et al.  Investigation of Basal Plane Dislocations in the 4H-SiC Epilayers Grown on {0001} Substrates , 2005 .

[25]  M. Skowronski,et al.  Spontaneous formation of stacking faults in highly doped 4H–SiC during annealing , 2002 .

[26]  H. Lendenmann,et al.  Characterisation and Defects in Silicon Carbide , 2002 .

[27]  G. Jessen,et al.  4H- to 3C-SiC Polytypic Transformation during Oxidation , 2002 .

[28]  S. Öberg,et al.  Cubic polytype inclusions in 4H–SiC , 2003 .

[29]  Adrian Powell,et al.  Bulk Crystal Growth, Epitaxy, and Defect Reduction in Silicon Carbide Materials for Microwave and Power Devices , 2005 .

[30]  K. Marukawa A new method of burgers vector identification from electron microscope images , 1979 .

[31]  B. W. Hakki,et al.  Degradation of CW GaAs double-heterojunction lasers at 300 K , 1973 .

[32]  Toshihiko Hayashi,et al.  5.0 kV 4H-SiC SEMOSFET with Low RonS of 88 m Ω cm2 , 2002 .

[33]  A. Henry,et al.  Long minority carrier lifetimes in 6H SiC grown by chemical vapor deposition , 1995 .

[34]  Brett Hull,et al.  Drift-Free, 50 A, 10 kV 4H-SiC PiN Diodes with Improved Device Yields , 2005 .

[35]  N. Ohtani,et al.  Structural defects in α-SiC single crystals grown by the modified-Lely method , 1996 .

[36]  Robert S. Okojie,et al.  Observation of 4H–SiC to 3C–SiC polytypic transformation during oxidation , 2001 .

[37]  Tsukamoto,et al.  Gradual tilting of crystallographic orientation and configuration of dislocations in GaN selectively grown by vapour phase epitaxy methods , 2000, Journal of electron microscopy.

[38]  P. Pirouz,et al.  An optical and transmission electron microscopy study of deformation-induced defects in 6H-SiC , 1998 .

[39]  O. Ueda,et al.  Degradation of III–V Opto‐Electronic Devices , 1988 .

[40]  P. Neudeck,et al.  Characterization of SiC Epitaxial Structures using High-Resolution X-Ray Diffraction Techniques , 2004 .

[41]  Friedhelm Bechstedt,et al.  Polytypism and Properties of Silicon Carbide , 1997 .

[42]  H. Lendenmann,et al.  Long Term Operation of 4.5kV PiN and 2.5kV JBS Diodes , 2001 .

[43]  A. N. Pilyankevichand,et al.  Motion of partial dislocation in silicon carbide , 1984 .

[44]  Anne Henry,et al.  SiC power devices for high voltage applications , 1999 .

[45]  Supratik Guha,et al.  〈100〉 dark line defect in II‐VI blue‐green light emitters , 1994 .

[46]  S. Arthur,et al.  Stacking-fault formation and propagation in 4H-SiC PiN diodes , 2002 .

[47]  R. Okojie,et al.  Residual Stresses and Stacking Faults in n-Type 4H-SiC Epilayers , 2004 .

[48]  J. Lindner,et al.  ION BEAM INDUCED AMORPHIZATION AND RECRYSTALLIZATION OF SI/SIC/SI LAYER SYSTEMS , 1996 .

[49]  H. Lendenmann,et al.  Crystal Defects as Source of Anomalous Forward Voltage Increase of 4H-SiC Diodes , 2001 .

[50]  K. Kojima,et al.  Direct observation of dislocations propagated from 4H–SiC substrate to epitaxial layer by X-ray topography , 2004 .

[51]  F. Nabarro,et al.  Dislocations in solids , 1979 .

[52]  K. Kojima,et al.  Influence of growth conditions on basal plane dislocation in 4H-SiC epitaxial layer , 2004 .

[53]  V. Tsvetkov,et al.  General principles of growing large-size single crystals of various silicon carbide polytypes , 1981 .

[54]  J. Sumakeris,et al.  Cross-sectional structure of carrot defects in 4H–SiC epilayers , 2004 .

[55]  S. Öberg,et al.  Effective masses of two-dimensional electron gases around cubic inclusions in hexagonal silicon carbide , 2003 .

[56]  Lionel C. Kimerling,et al.  Dislocation climb model in compound semiconductors with zinc blende structure , 1976 .

[57]  Supratik Guha,et al.  Degradation of II‐VI based blue‐green light emitters , 1993 .

[58]  T. Frauenheim,et al.  Density Functional Based Modelling of 30° Partial Dislocations in SiC , 2004 .

[59]  M. Skowronski,et al.  Structure of recombination-induced stacking faults in high-voltage SiC p–n junctions , 2002 .

[60]  J. Bergman,et al.  Structural defects in electrically degraded 4H-SiC p+/n−/n+ diodes , 2002 .

[61]  E. Janzén,et al.  Structural Defects in Electrically Degraded 4H-SiC PiN Diodes , 2002 .

[62]  Changyu Shen,et al.  Visualization of low-frequency liquid surface acoustic waves by means of optical diffraction , 2002 .

[63]  A. Agarwal,et al.  Base Current Gain of Power (1800 V, 10 A) 4H-SiC npn-BJTs , 2004 .

[64]  Marek Skowronski,et al.  Dislocation nucleation in 4H silicon carbide epitaxy , 2004 .

[65]  W. Skorupa,et al.  Microstructural characterization of amorphized and recrystallized 6H-SiC , 1996 .

[66]  V. D. Heydemann,et al.  Plastic Deformation and Residual Stresses in SiC Boules Grown by PVT , 2000 .

[67]  S. Maximenko,et al.  Stacking fault nucleation sites in diffused 4H-SiC p‐i‐n diodes. , 2005 .

[68]  Koji Maeda,et al.  Quantitative measurements of recombination enhanced dislocation glide in gallium arsenide , 1983 .

[69]  Lionel C. Kimerling,et al.  Injection‐stimulated dislocation motion in semiconductors , 1976 .

[70]  S. Öberg,et al.  Stacking faults in 3C-, 4H-, and 6H-SiC polytypes investigated by an ab initio supercell method , 2003 .

[71]  P. Hutchinson,et al.  The origin of dislocation climb during laser operation , 1977 .

[72]  S. Öberg,et al.  Theoretical study of planar defects in silicon carbide , 2002 .

[73]  N. Itoh Creation of lattice defects by electronic excitation in alkali halides , 1982 .

[74]  T. D. Dzhafarov Photostimulated Diffusion in Semiconductors , 1983, Septemmber 16.

[75]  H. Bleichner,et al.  High-Power SiC Diodes: Characteristics, Reliability and Relation to Material Defects , 2002 .

[76]  TEM of Dislocations in Forward-Biased 4H-SiC PiN Diodes , 2004 .

[77]  I. Nikitina,et al.  Deformation of nitrogen doped cubic polytype SiC , 1995 .

[78]  P. Petroff,et al.  Rapid degradation phenomenon in heterojunction GaAlAs-GaAs lasers , 1974 .

[79]  Peter Friedrichs,et al.  BIFET – a Novel Bipolar SiC Switch for High Voltage Power Electronics , 2004 .

[80]  S. Ha,et al.  Core structure and properties of partial dislocations in silicon carbide p-i-n diodes , 2003 .

[81]  S. Öberg,et al.  Localized electronic states around stacking faults in silicon carbide , 2001 .

[82]  S. Arthur,et al.  Structure of stacking faults formed during the forward bias of 4H-SiC p-i-n diodes , 2003 .

[83]  Marek Skowronski,et al.  High-resolution X-ray diffraction and optical absorption study of heavily nitrogen-doped 4H–SiC crystals , 2003 .

[84]  H. Strunk,et al.  Stacking faults in heavily nitrogen doped 4H-SiC , 2004 .

[85]  Bell,et al.  Observation of interface band structure by ballistic-electron-emission microscopy. , 1988, Physical review letters.

[86]  M. Graef,et al.  Origin of domain structure in hexagonal silicon carbide boules grown by the physical vapor transport method , 2000 .

[87]  S. Öberg,et al.  Theoretical Calculation of Stacking Fault Energies in Silicon Carbide , 2002 .

[88]  M. Asif Khan,et al.  Growth defects in GaN films on sapphire: The probable origin of threading dislocations , 1996 .

[89]  Tadashi Ito,et al.  Ultrahigh-quality silicon carbide single crystals , 2004, Nature.

[90]  A. Henry,et al.  Doping-induced strain in N-doped 4H-SiC crystals , 2003 .

[91]  N. Ohtani,et al.  Sublimation growth of 6H- and 4H-SiC single crystals in the [11¯0 0] and [1 12¯0] directions , 1997 .

[92]  V. Heine,et al.  A computational study into the origin of SiC polytypes , 1992 .

[93]  H. Lendenmann,et al.  Transmission electron microscopy investigation of dislocations in forward-biased 4H-SiC p–i–n diodes , 2003 .

[94]  Arto V. Nurmikko,et al.  Microstructure study of a degraded pseudomorphic separate confinement heterostructure blue‐green laser diode , 1994 .

[95]  J. Bergman,et al.  Luminescence from stacking faults in 4H SiC , 2001 .

[96]  Kibog Park,et al.  Quantum well state of self-forming 3C−SiC inclusions in 4H SiC determined by ballistic electron emission microscopy , 2004 .

[97]  Marek Skowronski,et al.  Dislocation conversion in 4H silicon carbide epitaxy , 2002 .

[98]  Kibog Park,et al.  Cubic inclusions in 4H-SiC studied with ballistic electron-emission microscopy , 2004 .

[99]  Influence of Different Peripheral Protections on the Breakover Voltage of a 4H-SiC GTO Thyristor , 2004 .

[100]  Robert F. Davis,et al.  Chemical vapor deposition and characterization of 6H‐SiC thin films on off‐axis 6H‐SiC substrates , 1988 .

[101]  Arto V. Nurmikko,et al.  On degradation of ZnSe‐based blue‐green diode lasers , 1995 .

[102]  Michael Dudley,et al.  Recombination-enhanced defect motion in forward-biased 4H–SiC p-n diodes , 2002 .

[103]  H. Matsunami,et al.  Characterization of in-grown stacking faults in 4H–SiC (0001) epitaxial layers and its impacts on high-voltage Schottky barrier diodes , 2005 .

[104]  Katsuyuki Suzuki,et al.  Defects in plastically deformed 6H SiC single crystals studied by transmission electron microscopy , 1988 .

[105]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[106]  Yoshitaka Sugawara,et al.  SiC Devices for High Voltage High Power Applications , 2004 .

[107]  P. Hutchinson,et al.  Defect structure of degraded heterojunction GaAlAs−GaAs lasers , 1975 .

[108]  Lionel C. Kimerling,et al.  Observation of recombination-enhanced defect reactions in semiconductors , 1974 .

[109]  Koji Maeda,et al.  Recombination enhanced dislocation glide in silicon carbide observed in-situ by transmission electron microscopy , 1993 .

[110]  H. Bleichner,et al.  Application of optical emission microscopy for reliability studies in 4H-SiC p(+)/n(-)/n(+) diodes , 2001 .

[111]  N. Ohtani,et al.  Modified-Lely SiC Crystals Grown in [11-00] and [112-0] Directions , 1997 .

[112]  S. D. Arthur,et al.  Propagation of Current-Induced Stacking Faults and Forward Voltage Degradation in 4H-SiC PiN Diodes , 2002 .

[113]  V. Tsvetkov,et al.  Investigation of growth processes of ingots of silicon carbide single crystals , 1978 .

[114]  C. Poweleit,et al.  Oxidation-Induced Crystallographic Transformation in Heavily N-Doped 4H-SiC Wafers , 2002 .

[115]  A. Ellison,et al.  CVD Growth and Characterisation of SiC Epitaxial Layers on Faces Perpendicular to the (0001) Basal Plane , 1997 .

[116]  H. Tsuchida,et al.  Structural analysis and reduction of in-grown stacking faults in 4H–SiC epilayers , 2005 .

[117]  A. Agarwal,et al.  10-kV, 123-m/spl Omega//spl middot/cm/sup 2/ 4H-SiC power DMOSFETs , 2004, IEEE Electron Device Letters.

[118]  A. Agarwal,et al.  SiC BJT Technology for Power Switching and RF Applications , 2004 .

[119]  P. Petroff,et al.  Defect structure introduced during operation of heterojunction GaAs lasers , 1973 .

[120]  P. Pirouz,et al.  Polytypic transformations in SiC: the role of TEM , 1993 .

[121]  Jian H. Zhao,et al.  A High Voltage (1,750V) and High Current Gain (β=24.8) 4H-SiC Bipolar Junction Transistor using a Thin (12 μm) Drift layer , 2004 .

[122]  Michael Dudley,et al.  X-Ray Topographic Studies of Defects in PVT 6H-SiC Substrates and Epitaxial 6H-SiC Thin Films , 1994 .