A laser-assisted chlorination process for reversible writing of doping patterns in graphene

[1]  M. Linford,et al.  Definition of a new (Doniach‐Sunjic‐Shirley) peak shape for fitting asymmetric signals applied to reduced graphene oxide/graphene oxide XPS spectra , 2021, Surface and Interface Analysis.

[2]  Neal Fairley,et al.  Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy , 2021 .

[3]  Feng Wang,et al.  Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures , 2020, Nature Electronics.

[4]  C. Radtke,et al.  Reversibility of Graphene Photochlorination , 2018, The Journal of Physical Chemistry C.

[5]  E. Kaxiras,et al.  Heterointerface effects in the electrointercalation of van der Waals heterostructures , 2018, Nature.

[6]  Brian M. Bersch,et al.  Tuning the Electronic and Photonic Properties of Monolayer MoS2 via In Situ Rhenium Substitutional Doping , 2018 .

[7]  P. Kim,et al.  Controlled Electrochemical Intercalation of Graphene/h-BN van der Waals Heterostructures. , 2017, Nano letters.

[8]  F. Koppens,et al.  Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors , 2017, Science Advances.

[9]  V. Chaban,et al.  Boron doping of graphene-pushing the limit. , 2016, Nanoscale.

[10]  A. Kis,et al.  Disorder engineering and conductivity dome in ReS2 with electrolyte gating , 2016, Nature Communications.

[11]  Kwang S. Kim,et al.  Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. , 2016, Chemical reviews.

[12]  V. Pham,et al.  Low damage pre-doping on CVD graphene/Cu using a chlorine inductively coupled plasma , 2015 .

[13]  F. Kang,et al.  Ultrasensitive gas detection of large-area boron-doped graphene , 2015, Proceedings of the National Academy of Sciences.

[14]  M. Dresselhaus,et al.  X‐Ray Spectroscopic Investigation of Chlorinated Graphene: Surface Structure and Electronic Effects , 2015 .

[15]  V. Pham,et al.  Cyclic chlorine trap-doping for transparent, conductive, thermally stable and damage-free graphene. , 2014, Nanoscale.

[16]  Moonsub Shim,et al.  Direct laser writing of air-stable p-n junctions in graphene. , 2014, ACS nano.

[17]  Richard A. Lawson,et al.  Photochemical Doping and Tuning of the Work Function and Dirac Point in Graphene Using Photoacid and Photobase Generators , 2014 .

[18]  T. Taniguchi,et al.  Photoinduced doping in heterostructures of graphene and boron nitride. , 2014, Nature nanotechnology.

[19]  K. Novoselov,et al.  Photothermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors. , 2014, Nano letters.

[20]  Jing Kong,et al.  Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene. , 2013, ACS nano.

[21]  Hasan Sahin,et al.  Chlorine Adsorption on Graphene: Chlorographene , 2012, 1211.5242.

[22]  M. Aono,et al.  Selective Adsorption of Thiol Molecules at Sulfur Vacancies on MoS2(0001), Followed by Vacancy Repair via S–C Dissociation , 2012 .

[23]  T. Maiyalagan,et al.  Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications , 2012 .

[24]  Zhirong Liu,et al.  Evolutionary Chlorination of Graphene: From Charge-Transfer Complex to Covalent Bonding and Nonbonding , 2012 .

[25]  E. Bekyarova,et al.  Covalent Chemistry for Graphene Electronics , 2011 .

[26]  Takashi Taniguchi,et al.  Hot Carrier–Assisted Intrinsic Photoresponse in Graphene , 2011, Science.

[27]  Hailin Peng,et al.  Photochemical chlorination of graphene. , 2011, ACS nano.

[28]  Charles M Marcus,et al.  Hot carrier transport and photocurrent response in graphene. , 2011, Nano letters.

[29]  A. Morpurgo,et al.  Accessing the transport properties of graphene and its multilayers at high carrier density , 2010, Proceedings of the National Academy of Sciences.

[30]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[31]  C. N. Lau,et al.  Spectroscopy of covalently functionalized graphene. , 2010, Nano letters.

[32]  J. Robinson,et al.  Properties of fluorinated graphene films. , 2010, Nano letters.

[33]  C. Grigoropoulos Transport in Laser Microfabrication: Fundamentals and Applications , 2009 .

[34]  Jiwoong Park,et al.  Imaging of photocurrent generation and collection in single-layer graphene. , 2009, Nano letters.

[35]  S. Sarma,et al.  Theory of thermopower in two-dimensional graphene , 2009, 0902.1749.

[36]  F. Xia,et al.  Photocurrent imaging and efficient photon detection in a graphene transistor. , 2009, Nano letters.

[37]  F. Xia,et al.  Role of contacts in graphene transistors: A scanning photocurrent study , 2009, 0902.1479.

[38]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[39]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[40]  S. Sarma,et al.  Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene , 2007, 0711.0754.

[41]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[42]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[43]  Van P. Carey,et al.  Statistical Thermodynamics and Microscale Thermophysics , 2001 .

[44]  C. Grigoropoulos,et al.  Site Selective Doping of Ultrathin Metal Dichalcogenides by Laser‐Assisted Reaction , 2016, Advanced materials.

[45]  D. Bäuerle Laser Processing and Chemistry , 1996 .

[46]  M. Heaven,et al.  Interpretation of the spontaneous predissociation of Cl2[B3Π(0+u)] , 1982 .