Modeling of Pedestrians

Different families of models first developed for fluid mechanics have been extended to road, pedestrian, or intracellular transport. These models allow to describe the systems at different scales and to account for different aspects of dynamics. In this paper, we focus on pedestrians and illustrate the various families of models by giving an example of each type. We discuss the specificities of crowds compared to other transport systems.

[1]  H. Hilhorst,et al.  Spontaneous symmetry breaking in a two-lane model for bidirectional overtaking traffic , 2010, 1006.2272.

[2]  A. Czirók,et al.  Collective Motion , 1999, physics/9902023.

[3]  Serge P. Hoogendoorn,et al.  Self-Organization in Pedestrian Flow , 2005 .

[4]  A. Schadschneider,et al.  Asymmetric exclusion processes with shuffled dynamics , 2005, cond-mat/0509546.

[5]  Cécile Appert-Rolland,et al.  A Macroscopic Model for Bidirectional Pedestrian Flow , 2014 .

[6]  A. Seyfried,et al.  The fundamental diagram of pedestrian movement revisited , 2005, physics/0506170.

[7]  A. Schadschneider,et al.  Traffic and Granular Flow '13 , 2015 .

[8]  Michael Schreckenberg,et al.  Pedestrian and Evacuation Dynamics 2012 , 2014 .

[9]  Anna Walsh STUDIES IN MOLECULAR DYNAMICS , 1965 .

[10]  Michel Rascle,et al.  Resurrection of "Second Order" Models of Traffic Flow , 2000, SIAM J. Appl. Math..

[11]  Serge P. Hoogendoorn,et al.  Self-organization in walker experiments , 2004 .

[12]  P. Degond,et al.  A Hierarchy of Heuristic-Based Models of Crowd Dynamics , 2013, 1304.1927.

[13]  Partha Chakroborty,et al.  Comparison of Pedestrian Fundamental Diagram across Cultures , 2009, Adv. Complex Syst..

[14]  Andreas Schadschneider,et al.  Friction effects and clogging in a cellular automaton model for pedestrian dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  H. Hilhorst,et al.  Frozen shuffle update for an asymmetric exclusion process on a ring , 2011, 1105.0352.

[16]  Hubert Klüpfel,et al.  The Simulation of Crowds at Very Large Events , 2007 .

[17]  L. A. Pipes An Operational Analysis of Traffic Dynamics , 1953 .

[18]  Julien Cividini,et al.  Diagonal patterns and chevron effect in intersecting traffic flows , 2013 .

[19]  Cécile Appert-Rolland,et al.  Experimental Study of the Following Dynamics of Pedestrians , 2014 .

[20]  G. Theraulaz,et al.  Vision-based macroscopic pedestrian models , 2013, 1307.1953.

[21]  Serge P. Hoogendoorn,et al.  Pedestrian route-choice and activity scheduling theory and models , 2004 .

[22]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[23]  David A. Smith,et al.  Dynamical pair approximation for cellular automata with shuffle update , 2007 .

[24]  E. Montroll,et al.  Traffic Dynamics: Studies in Car Following , 1958 .

[25]  Michael Schreckenberg,et al.  Simulation of competitive egress behavior: comparison with aircraft evacuation data , 2003 .

[26]  Andreas Schadschneider,et al.  From ant trails to pedestrian dynamics , 2003 .

[27]  Cécile Appert-Rolland,et al.  Realistic following behaviors for crowd simulation , 2012, Comput. Graph. Forum.

[28]  Ludger Santen,et al.  Intracellular transport driven by cytoskeletal motors: General mechanisms and defects , 2015, 1507.06166.

[29]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[30]  Cécile Appert-Rolland,et al.  Two-way multi-lane traffic model for pedestrians in corridors , 2011, Networks Heterog. Media.

[31]  Cécile Appert-Rolland,et al.  Frozen shuffle update for a deterministic totally asymmetric simple exclusion process with open boundaries , 2011 .

[32]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[33]  T. Chou,et al.  Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport , 2011, 1110.1783.

[34]  J. Zittartz,et al.  Cellular Automaton Approach to Pedestrian Dynamics - Applications , 2001, cond-mat/0112119.

[35]  Michael Schreckenberg,et al.  Microscopic Simulation of Evacuation Processes on Passenger Ships , 2000, ACRI.

[36]  Serge P. Hoogendoorn,et al.  Empirics of Multianticipative Car-Following Behavior , 2006 .

[37]  P. I. Richards Shock Waves on the Highway , 1956 .

[38]  Jean-François Gouyet,et al.  Stochastic and Hydrodynamic Lattice Gas Models: Mean-Field Kinetic Approaches , 2002, Int. J. Bifurc. Chaos.

[39]  Michael Schreckenberg,et al.  A cellular automaton model for freeway traffic , 1992 .

[40]  Harold J Payne,et al.  MODELS OF FREEWAY TRAFFIC AND CONTROL. , 1971 .

[41]  Cécile Appert-Rolland,et al.  Properties of pedestrians walking in line. II. Stepping behavior. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  A. Schadschneider,et al.  Statistical physics of vehicular traffic and some related systems , 2000, cond-mat/0007053.

[44]  R. B. Potts,et al.  Car-Following Theory of Steady-State Traffic Flow , 1959 .

[45]  Michael Schreckenberg,et al.  Traffic and Granular Flow ' 05 , 2007 .

[46]  Katsuhiro Nishinari,et al.  Modelling of self-driven particles: Foraging ants and pedestrians , 2006 .

[47]  A. Schadschneider,et al.  Simulation of pedestrian dynamics using a two dimensional cellular automaton , 2001 .

[48]  J. Pettré,et al.  Properties of pedestrians walking in line: fundamental diagrams. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Daichi Yanagisawa,et al.  Improvement of pedestrian flow by slow rhythm. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Michael Schreckenberg,et al.  Fundamental diagram of a one-dimensional cellular automaton model for pedestrian flow — the ASEP with shuffled update , 2007 .

[52]  Erwin Frey,et al.  Totally asymmetric simple exclusion process with Langmuir kinetics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.