A Review of Translational Animal Models for Knee Osteoarthritis

Knee osteoarthritis remains a tremendous public health concern, both in terms of health-related quality of life and financial burden of disease. Translational research is a critical step towards understanding and mitigating the long-term effects of this disease process. Animal models provide practical and clinically relevant ways to study both the natural history and response to treatment of knee osteoarthritis. Many factors including size, cost, and method of inducing osteoarthritis are important considerations for choosing an appropriate animal model. Smaller animals are useful because of their ease of use and cost, while larger animals are advantageous because of their anatomical similarity to humans. This evidence-based review will compare and contrast several different animal models for knee osteoarthritis. Our goal is to inform the clinician about current research models, in order to facilitate the transfer of knowledge from the “bench” to the “bedside.”

[1]  E. Grood,et al.  Knee joint contact pressure decreases after chronic meniscectomy relative to the acutely meniscectomized joint: A mechanical study in the goat , 1993, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[2]  D. Yuming,et al.  Carboxymethylated chitin reduces MMP-1 expression in rabbit ACLT osteoarthritic cartilage , 2004, Annals of the rheumatic diseases.

[3]  Bendele Am,et al.  Animal models of osteoarthritis. , 2001 .

[4]  J. Cook,et al.  Meniscal release in cruciate ligament intact stifles causes lameness and medial compartment cartilage pathology in dogs 12 weeks postoperatively. , 2009, Veterinary surgery : VS.

[5]  E. Vignon,et al.  Non-invasive in vivo quantification of the medial tibial cartilage thickness progression in an osteoarthritis rabbit model with quantitative 3D high resolution micro-MRI. , 2007, Osteoarthritis and cartilage.

[6]  C. Kawcak,et al.  Effects of triamcinolone acetonide on an in vivo equine osteochondral fragment exercise model. , 1997, Equine veterinary journal.

[7]  A. M. Rorvik,et al.  Unstable Stifles without Clinical or Radiographic Osteoarthritis in Young Goats: An Experimental Study , 1996, Acta Veterinaria Scandinavica.

[8]  S. Johnston,et al.  Osteoarthritis. Joint anatomy, physiology, and pathobiology. , 1997, The Veterinary clinics of North America. Small animal practice.

[9]  A. Yoshida,et al.  Intra-articular injection of interleukin-4 decreases nitric oxide production by chondrocytes and ameliorates subsequent destruction of cartilage in instability-induced osteoarthritis in rat knee joints. , 2008, Osteoarthritis and cartilage.

[10]  C. Bellenger,et al.  The influence of weight-bearing exercise on articular cartilage of meniscectomized joints. An experimental study in sheep. , 1990, Clinical orthopaedics and related research.

[11]  L D Hall,et al.  Detection and monitoring of progressive degeneration of osteoarthritic cartilage by MRI. , 1995, Acta orthopaedica Scandinavica. Supplementum.

[12]  Y. Hirasawa,et al.  Adenovirus mediated gene delivery to the joints of guinea pigs. , 1998, The Journal of rheumatology.

[13]  L. Vaughan,et al.  Arthritis of the canine stifle joint , 1975, Veterinary Record.

[14]  Alyson Fox,et al.  Pain related behaviour in two models of osteoarthritis in the rat knee , 2004, Pain.

[15]  B. Hallgrímsson,et al.  Bisphosphonates reduce bone mineral loss at ligament entheses after joint injury. , 2005, Osteoarthritis and cartilage.

[16]  Y. Tabata,et al.  Regeneration of Defects in Articular Cartilage in Rat Knee Joints by CCN2 (Connective Tissue Growth Factor) , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[17]  S. Glasson,et al.  The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. , 2007, Osteoarthritis and cartilage.

[18]  D. Loeuille,et al.  In vivo high-resolution MRI (7T) of femoro-tibial cartilage changes in the rat anterior cruciate ligament transection model of osteoarthritis: a cross-sectional study. , 2010, Rheumatology.

[19]  William E. Jones,et al.  The Veterinary Clinics of North America , 2003 .

[20]  C. Rorabeck,et al.  Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. , 1997, The Journal of clinical investigation.

[21]  K. Pritzker,et al.  Recommendations for the use of preclinical models in the study and treatment of osteoarthritis. , 2010, Osteoarthritis and cartilage.

[22]  G. Nuki,et al.  Experimentally-induced osteoarthritis in the dog. , 1973, Annals of the rheumatic diseases.

[23]  J. Pelletier,et al.  In vivo dual inhibition of cyclooxygenase and lipoxygenase by ML-3000 reduces the progression of experimental osteoarthritis: suppression of collagenase 1 and interleukin-1beta synthesis. , 2001, Arthritis and rheumatism.

[24]  H Weinans,et al.  Animal models for osteoarthritis: the effect of ovariectomy and estrogen treatment - a systematic approach. , 2008, Osteoarthritis and cartilage.

[25]  A. Bendele,et al.  Osteoarthrosis in guinea pigs: histopathologic and scanning electron microscopic features. , 1989, Laboratory animal science.

[26]  T. Spector,et al.  Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study , 2007, Arthritis research & therapy.

[27]  C. Little,et al.  The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the mouse. , 2010, Osteoarthritis and cartilage.

[28]  O. Svensson,et al.  Correlation of morphologic and biochemical changes in the natural history of spontaneous osteoarthrosis in guinea pigs. , 1997, Arthritis and rheumatism.

[29]  J. Pelletier,et al.  The inhibition of subchondral bone resorption in the early phase of experimental dog osteoarthritis by licofelone is associated with a reduction in the synthesis of MMP-13 and cathepsin K. , 2004, Bone.

[30]  C. Kawcak,et al.  Changes in synovial fluid and serum biomarkers with exercise and early osteoarthritis in horses. , 2008, Osteoarthritis and cartilage.

[31]  Cyril B Frank,et al.  Meniscectomy causes significant in vivo kinematic changes and mechanically induced focal chondral lesions in a sheep model , 2011, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[32]  C. Kawcak,et al.  Clinical evaluation of the effects of immobilization followed by remobilization and exercise on the metacarpophalangeal joint in horses. , 2002, American journal of veterinary research.

[33]  Brian J Cole,et al.  Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair , 2006, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[34]  K D Brandt,et al.  Serial kinematic analysis of the unstable knee after transection of the anterior cruciate ligament: Temporal and angular changes in a canine model of osteoarthritis , 1994, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[35]  T. Aigner,et al.  Histopathology atlas of animal model systems - overview of guiding principles. , 2010, Osteoarthritis and cartilage.

[36]  Hao Peng,et al.  The effects of carboxymethylated chitosan on metalloproteinase-1, −3 and tissue inhibitor of metalloproteinase-1 gene expression in cartilage of experimental osteoarthritis , 2005, Rheumatology International.

[37]  J. Raynauld,et al.  Osteophytosis, subchondral bone sclerosis, joint effusion and soft tissue thickening in canine experimental stifle osteoarthritis: comparison between 1.5 T magnetic resonance imaging and computed radiography. , 2008, Veterinary surgery : VS.

[38]  C. Kawcak,et al.  Effects of osteochondral fragmentation and intra-articular triamcinolone acetonide treatment on subchondral bone in the equine carpus. , 1998, Equine veterinary journal.

[39]  S. Tashman,et al.  Spontaneous and experimental osteoarthritis in dog: Similarities and differences in proteoglycan levels , 2003, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[40]  R. Teplitz,et al.  NZB/NZW mice as a model of systemic lupus erythematosus. , 1966, JAMA.

[41]  E Vignon,et al.  Protective effects of licofelone, a 5-lipoxygenase and cyclo-oxygenase inhibitor, versus naproxen on cartilage loss in knee osteoarthritis: a first multicentre clinical trial using quantitative MRI , 2008, Annals of the rheumatic diseases.

[42]  M. Hurtig,et al.  Characterization of experimentally induced post-traumatic osteoarthritis in the medial femorotibial joint of horses. , 2006, American journal of veterinary research.

[43]  D. Felson,et al.  The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. , 1995, Arthritis and rheumatism.

[44]  M. Hochberg,et al.  Joint Injury in Young Adults and Risk for Subsequent Knee and Hip Osteoarthritis , 2000, Annals of Internal Medicine.

[45]  K. Hook,et al.  Surgically induced osteoarthritis in the rat results in the development of both osteoarthritis-like joint pain and secondary hyperalgesia. , 2006, Osteoarthritis and cartilage.

[46]  J. McDougall,et al.  Local application of the endocannabinoid hydrolysis inhibitor URB597 reduces nociception in spontaneous and chemically induced models of osteoarthritis , 2011, PAIN.

[47]  A. Borthakur,et al.  Quantitative cartilage degeneration associated with spontaneous osteoarthritis in a guinea pig model , 2012, Journal of magnetic resonance imaging : JMRI.

[48]  J. Cook,et al.  Subchondral bone changes in three different canine models of osteoarthritis. , 2011, Osteoarthritis and cartilage.

[49]  J. Miyazaki,et al.  Osteoarthritis associated with mild chondrodysplasia in transgenic mice expressing alpha 1(IX) collagen chains with a central deletion. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. Spector,et al.  Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study. , 2006, Arthritis and rheumatism.

[51]  F. Barry,et al.  The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in sheep and goats. , 2010, Osteoarthritis and cartilage.

[52]  H. Oxlund,et al.  Relationship between articular cartilage damage and subchondral bone properties and meniscal ossification in the Dunkin Hartley guinea pig model of osteoarthritis , 2011, Scandinavian journal of rheumatology.

[53]  G. Nuovo,et al.  Temporal expression and tissue distribution of interleukin-1β in two strains of guinea pigs with varying propensity for spontaneous knee osteoarthritis. , 2011, Osteoarthritis and cartilage.

[54]  J. Bijlsma,et al.  Steady progression of osteoarthritic features in the canine groove model. , 2002, Osteoarthritis and cartilage.

[55]  A. Cole,et al.  Osteoarthritic lesions: involvement of three different collagenases. , 1997, Arthritis and rheumatism.

[56]  F. Cicuttini,et al.  Effects of Hylan G-F 20 supplementation on cartilage preservation detected by magnetic resonance imaging in osteoarthritis of the knee: a two-year single-blind clinical trial , 2011, BMC musculoskeletal disorders.

[57]  A. Bendele,et al.  Spontaneous cartilage degeneration in guinea pigs. , 1988, Arthritis and rheumatism.

[58]  Qiankun Zhang,et al.  Efficacy of Infliximab in a Rabbit Model of Osteoarthritis , 2012, Connective tissue research.

[59]  R. Strachan,et al.  Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content. , 2004, Osteoarthritis and cartilage.

[60]  D. Richardson,et al.  Effects of short-term cast immobilization on equine articular cartilage. , 1993, American journal of veterinary research.

[61]  D. Wilson,et al.  Moderate exercise exacerbates the osteoarthritic lesions produced in cartilage by meniscectomy: a morphological study. , 1993, Osteoarthritis and cartilage.

[62]  J J Parkkinen,et al.  Age matters: collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading. , 2001, Osteoarthritis and cartilage.

[63]  C. Kawcak,et al.  Effects of exercise vs experimental osteoarthritis on imaging outcomes. , 2008, Osteoarthritis and cartilage.

[64]  Frank P Barry,et al.  Stem cell therapy in a caprine model of osteoarthritis. , 2003, Arthritis and rheumatism.

[65]  K. Messner,et al.  Maturation-dependent repair of untreated osteochondral defects in the rabbit knee joint. , 1997, Journal of biomedical materials research.

[66]  L. Price,et al.  Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial. , 2011, Osteoarthritis and cartilage.

[67]  Y. Hirasawa,et al.  The effects of hyaluronan on matrix metalloproteinase-3 (MMP-3), interleukin-1beta(IL-1beta), and tissue inhibitor of metalloproteinase-1 (TIMP-1) gene expression during the development of osteoarthritis. , 1999, Osteoarthritis and cartilage.

[68]  M. Buschmann,et al.  Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair , 2009, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[69]  A. Bendele,et al.  The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the guinea pig. , 2010, Osteoarthritis and cartilage.

[70]  G. Beauchamp,et al.  Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis--part I. , 2009, Osteoarthritis and cartilage.

[71]  W. Horton,et al.  Comparison of age-associated degeneration of articular cartilage in Wistar and Fischer 344 rats. , 1995, Laboratory animal science.

[72]  M. Sakata,et al.  The role of C-C chemokines and their receptors in osteoarthritis. , 2001, Arthritis and rheumatism.

[73]  B. Powers,et al.  Effect of betamethasone and exercise on equine carpal joints with osteochondral fragments. , 1994, Veterinary surgery : VS.

[74]  K. Brandt,et al.  Benoxaprofen reduces osteophyte formation and fibrillation after articular cartilage injury. , 1985, The Journal of rheumatology.

[75]  Christian Gege,et al.  A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: Evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models. , 2009, Arthritis and rheumatism.

[76]  E. Thonar,et al.  The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage. , 2002, Osteoarthritis and cartilage.

[77]  J. Katz,et al.  The dramatic increase in total knee replacement utilization rates in the United States cannot be fully explained by growth in population size and the obesity epidemic. , 2012, The Journal of bone and joint surgery. American volume.

[78]  G. Osterhoff,et al.  Matrix-Associated Implantation of Predifferentiated Mesenchymal Stem Cells Versus Articular Chondrocytes , 2011, The American journal of sports medicine.

[79]  E. Hunziker,et al.  Stereologic Analysis of Tibial-Plateau Cartilage and Femoral Cancellous Bone in Guinea Pigs With Spontaneous Osteoarthritis , 2011, Clinical orthopaedics and related research.

[80]  R. Appleyard,et al.  Arthroscopy -- a potential "gold standard" for the diagnosis of the chondropathy of early osteoarthritis. , 2005, Osteoarthritis and cartilage.

[81]  A. Bendele,et al.  The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the rat. , 2010, Osteoarthritis and cartilage.

[82]  K. Brandt,et al.  Severity of medial meniscus damage in the canine knee after anterior cruciate ligament transection. , 2002, Osteoarthritis and cartilage.

[83]  A. Cruz,et al.  The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the horse. , 2010, Osteoarthritis and cartilage.

[84]  O. Svensson,et al.  Effect of an Inhibitor of Matrix Metalloproteinases on Spontaneous Osteoarthritis in Guinea Pigs , 1998, Advances in dental research.

[85]  L. Ala‐Kokko,et al.  An inbred line of transgenic mice expressing an internally deleted gene for type II procollagen (COL2A1). Young mice have a variable phenotype of a chondrodysplasia and older mice have osteoarthritic changes in joints. , 1993, The Journal of clinical investigation.

[86]  S. Kopp,et al.  Induction of osteoarthrosis in the guinea pig knee by papain. , 1983, Oral surgery, oral medicine, and oral pathology.

[87]  Frank P Luyten,et al.  GDF5 deficiency in mice is associated with instability-driven joint damage, gait and subchondral bone changes , 2010, Annals of the rheumatic diseases.

[88]  M. Scheck,et al.  Degenerative joint disease of the canine hip: experimental production by multiple papain and prednisone injections. , 1972, Clinical orthopaedics and related research.

[89]  H. Muir,et al.  An experimental model of osteoarthritis; early morphological and biochemical changes. , 1977, The Journal of bone and joint surgery. British volume.

[90]  H. Iwata,et al.  Effects of high-molecular-weight sodium hyaluronate on experimental osteoarthrosis induced by the resection of rabbit anterior cruciate ligament. , 1994, Clinical orthopaedics and related research.

[91]  J. Bijlsma,et al.  The canine 'groove' model of osteoarthritis is more than simply the expression of surgically applied damage. , 2006, Osteoarthritis and cartilage.

[92]  R. G. Johnson Transection of the canine anterior cruciate ligament: a concise review of experience with this model of degenerative joint disease. , 1986, Experimental pathology.

[93]  中田 研 Osteoarthritis associated with mild chondrodysplasia in transgenic mice expressing α1 (IX) collagen chains with a central deletion , 1993 .

[94]  T. Yamaguchi,et al.  Intra-articular injection of collagenase induces experimental osteoarthritis in mature rabbits. , 1998, Osteoarthritis and cartilage.

[95]  John Loughlin,et al.  An SNP in the 5'-UTR of GDF5 is associated with osteoarthritis susceptibility in Europeans and with in vivo differences in allelic expression in articular cartilage. , 2007, Human molecular genetics.

[96]  Thomas Aigner,et al.  Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. , 2003, Arthritis and rheumatism.

[97]  J. Pelletier,et al.  The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the dog. , 2010, Osteoarthritis and cartilage.

[98]  D. A. Brandt,et al.  Reduction of the severity of canine osteoarthritis by prophylactic treatment with oral doxycycline. , 1992, Arthritis and rheumatism.

[99]  A. Bendele,et al.  Effects of body weight restriction on the development and progression of spontaneous osteoarthritis in guinea pigs. , 1991, Arthritis and rheumatism.

[100]  C. Kawcak,et al.  Effects of immobilization followed by remobilization on mineral density, histomorphometric features, and formation of the bones of the metacarpophalangeal joint in horses. , 2002, American journal of veterinary research.

[101]  K. A. Lozoya,et al.  A novel rat osteoarthrosis model to assess apoptosis and matrix degradation. , 2000, Pathology, research and practice.

[102]  Brandt Kd,et al.  Benoxaprofen reduces osteophyte formation and fibrillation after articular cartilage injury. , 1985 .

[103]  S. Sörqvist Heat Resistance in Liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp , 2003, Acta veterinaria Scandinavica.

[104]  D. Laurent,et al.  In vivo MRI of cartilage pathogenesis in surgical models of osteoarthritis , 2006, Skeletal Radiology.

[105]  J. M. Williams,et al.  Early alterations in the collagen meshwork and lesions in the ankles are associated with spontaneous osteoarthritis in guinea-pigs. , 2002, Osteoarthritis and cartilage.

[106]  M. A. Glasby,et al.  AN EXPERIMENTAL STUDY IN SHEEP , 1994 .

[107]  Y. Turkoz,et al.  Effect of resveratrol in experimental osteoarthritis in rabbits , 2005, Inflammation Research.

[108]  C. McIlwraith,et al.  Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene , 2002, Gene Therapy.

[109]  James A. Cuff,et al.  Genome sequence, comparative analysis and haplotype structure of the domestic dog , 2005, Nature.

[110]  Y. Tokuhashi,et al.  Long‐term oral administration of glucosamine or chondroitin sulfate reduces destruction of cartilage and up‐regulation of MMP‐3 mRNA in a model of spontaneous osteoarthritis in Hartley guinea pigs , 2012, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[111]  A. Strongwater,et al.  Hisotological and radiographic determination of the age of physeal closure of the distal femur, proximal tibia, and proximal fibula of the New Zealand white rabbit , 1994, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[112]  L D Hall,et al.  Degenerative joint disease in the guinea pig. Use of magnetic resonance imaging to monitor progression of bone pathology. , 1996, Arthritis and rheumatism.

[113]  H. Potter,et al.  Meniscal Allograft Transplantation in the Sheep Knee , 2006, The American journal of sports medicine.

[114]  D. D’Lima,et al.  Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis. , 2006, Arthritis and rheumatism.

[115]  W H Simon,et al.  Scale effects in animal joints. I. Articular cartilage thickness and compressive stress. , 1970, Arthritis and rheumatism.

[116]  T. Skerry,et al.  Effects of the NSAIDs Meloxicam and Indomethacin on Cartilage Proteoglycan Synthesis and Joint Responses to Calcium Pyrophosphate Crystals in Dogs , 1999, Veterinary Research Communications.

[117]  J. Auer,et al.  Effect of hyaluronic acid in naturally occurring and experimentally induced osteoarthritis. , 1980, American journal of veterinary research.

[118]  T. Carpenter,et al.  MR protocols for imaging the guinea pig knee. , 1997, Magnetic resonance imaging.

[119]  R. Coatney,et al.  Meniscal ossification in spontaneous osteoarthritis in the guinea-pig. , 2000, Osteoarthritis and cartilage.

[120]  G. Voorhout,et al.  Degeneration, inflammation, regeneration, and pain/disability in dogs following destabilization or articular cartilage grooving of the stifle joint. , 2008, Osteoarthritis and cartilage.

[121]  R. Flipo,et al.  Systematic review of the management of canine osteoarthritis , 2009, Veterinary Record.

[122]  A. Bertone,et al.  Effective reduction of the interleukin-1β transcript in osteoarthritis-prone guinea pig chondrocytes via short hairpin RNA mediated RNA interference influences gene expression of mediators implicated in disease pathogenesis. , 2011, Osteoarthritis and cartilage.

[123]  R. Zernicke,et al.  Antiresorptive therapy conserves some periarticular bone and ligament mechanical properties after anterior cruciate ligament disruption in the rabbit knee , 2004, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[124]  P. Schnegelsberg,et al.  Mice lacking alpha 1 (IX) collagen develop noninflammatory degenerative joint disease. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[125]  F. Westwood,et al.  Characterisation of the guinea pig model of osteoarthritis by in vivo three-dimensional magnetic resonance imaging. , 2003, Osteoarthritis and cartilage.

[126]  J. Pelletier,et al.  The protective effect of licofelone on experimental osteoarthritis is correlated with the downregulation of gene expression and protein synthesis of several major cartilage catabolic factors: MMP-13, cathepsin K and aggrecanases , 2005, Arthritis research & therapy.

[127]  K. Brandt,et al.  Synovitis and osteoarthritic changes in canine articular cartilage after anterior cruciate ligament transection. Effect of surgical hemostasis. , 1990, Arthritis and rheumatism.

[128]  K. Pritzker,et al.  The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the rabbit. , 2010, Osteoarthritis and cartilage.

[129]  Freddie H Fu,et al.  Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. , 2006, Arthritis and rheumatism.

[130]  S. Olsson,et al.  Radiologic and patho-anatomic changes in the distal joints and the phalanges of the standardbred horse. , 1973, Acta veterinaria Scandinavica. Supplementum.

[131]  A. Bendele Progressive Chronic Osteoarthritis in Femorotibial Joints of Partial Medial Meniscectomized Guinea Pigs , 1987, Veterinary pathology.

[132]  O. Trubetskoy,et al.  Spontaneous osteoarthritis in Dunkin Hartley guinea pigs: histologic, radiologic, and biochemical changes. , 1997, Laboratory animal science.

[133]  A. Freemont,et al.  Moderation of iodoacetate-induced experimental osteoarthritis in rats by matrix metalloproteinase inhibitors. , 2001, Osteoarthritis and cartilage.

[134]  S. Gabriel,et al.  Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. , 2008, Arthritis and rheumatism.

[135]  R. Bohle,et al.  Evaluation of nonbiomedical and biomedical grade alginates for the transplantation of genetically modified articular chondrocytes to cartilage defects in a large animal model in vivo , 2011, Journal of Gene Medicine.

[136]  F. Eckstein,et al.  Quantitative Cartilage Imaging in Knee Osteoarthritis , 2010, Arthritis.

[137]  J. Raynauld,et al.  Magnetic resonance imaging can accurately assess the long-term progression of knee structural changes in experimental dog osteoarthritis , 2007, Annals of the rheumatic diseases.

[138]  L. Duong,et al.  The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. , 2004, Arthritis and rheumatism.

[139]  T. Miyazaki,et al.  Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis , 2012, Arthritis Research & Therapy.

[140]  J. Cook,et al.  Using animal models in osteoarthritis biomarker research. , 2011, The journal of knee surgery.

[141]  K. Brandt,et al.  Gait alterations in dogs after transection of the anterior cruciate ligament. , 1989, Arthritis and rheumatism.

[142]  A. Stark,et al.  Suppression of pain and joint destruction by inhibition of the proteasome system in experimental osteoarthritis , 2012, PAIN.

[143]  Ali Guermazi,et al.  Advances in imaging of osteoarthritis and cartilage. , 2011, Radiology.

[144]  P. Lipsky,et al.  A type I collagen defect leads to rapidly progressive osteoarthritis in a mouse model. , 2008, Arthritis and rheumatism.

[145]  J. Bijlsma,et al.  The canine 'groove' model, compared with the ACLT model of osteoarthritis. , 2002, Osteoarthritis and cartilage.

[146]  A. Bendele,et al.  Animal models of osteoarthritis. , 2001, Journal of musculoskeletal & neuronal interactions.

[147]  J. Coyne,et al.  Ability of the canine brief pain inventory to detect response to treatment in dogs with osteoarthritis. , 2008, Journal of the American Veterinary Medical Association.

[148]  L. Duong,et al.  Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. , 2006, Bone.

[149]  T. Kubo,et al.  Histomorphometric and biochemical effect of various hyaluronans on early osteoarthritis. , 1998, The Journal of rheumatology.

[150]  D. Felten,et al.  Effects of surgically induced instability on rat knee articular cartilage. , 1982, Journal of anatomy.

[151]  Christopher Smith Animal Models of Osteoarthritis , 2008 .

[152]  S. Mundlos,et al.  Kniest and Stickler dysplasia phenotypes caused by collagen type II gene (COL2A1) defect , 1993, Nature Genetics.

[153]  J. Pelletier,et al.  Licofelone reduces progression of structural changes in a canine model of osteoarthritis under curative conditions: effect on protease expression and activity. , 2006, The Journal of rheumatology.

[154]  Yusuke Nakamura,et al.  A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis , 2007, Nature Genetics.

[155]  R. E. Guzman,et al.  Mono-Iodoacetate-Induced Histologic Changes in Subchondral Bone and Articular Cartilage of Rat Femorotibial Joints: An Animal Model of Osteoarthritis , 2003, Toxicologic pathology.

[156]  Jill M. Wetter,et al.  Pharmacological characterization of A-960656, a histamine H₃ receptor antagonist with efficacy in animal models of osteoarthritis and neuropathic pain. , 2012, European journal of pharmacology.

[157]  J. Prieto,et al.  Apoptosis and nitric oxide in an experimental model of osteoarthritis in rabbit after hyaluronic acid treatment , 2005, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[158]  D. Shi,et al.  A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5' UTR of GDF5 with osteoarthritis susceptibility. , 2008, Human molecular genetics.

[159]  V. Duance,et al.  Type II collagen deposition in cruciate ligament precedes osteoarthritis in the guinea pig knee. , 2002, Osteoarthritis and cartilage.

[160]  M. Hanes,et al.  A comparative analysis of bone and cartilage metabolism in two strains of guinea-pig with varying degrees of naturally occurring osteoarthritis. , 2002, Osteoarthritis and cartilage.

[161]  C. Kawcak,et al.  In Vivo Evaluation of Autologous Cartilage Fragment-Loaded Scaffolds Implanted into Equine Articular Defects and Compared with Autologous Chondrocyte Implantation , 2009, The American journal of sports medicine.